PRESTRESSED CONCRETE IN CYPRUS

By : Hadjimitses G. Diofantos

. 🔊 🛞

Project Report Submitted to the Department of Civil Engineering of the Higher Technical Institute Nicosia - Cyprus

in partial fulfillment of the requirements for the diploma of TECHNICIAN ENGINEER

> in CIVIL ENGINEERING

> > JUNE 1992

1942

MORES

<u>Prestressed Concrete in Cyprus</u> Diofantos G. Hadjimitses

The purpose of this project, is the development of the basic understanding of the prestressed concrete principles. A special effort has been made to develop a clear, self - contained presentation, so that the project may be useful for everyone.

It is a theoretical approach based on the following subjects:

- Theory and general principles of prestressing and compare the reinforced with prestressed concrete theory.
- Discussion of the two prestressing methods named as PRETENSIONING and POST-TENSIONING and state the most popular prestressed systems.
- Presentation of the applications of prestressing in general.
- Presentation of the applications of prestressing in Cyprus with the aid of photographs.

This project is done with the help of different textbooks, with information taken from companies in Cyprus and other countries and with my own conclusion and observation after some visits to some construction areas in Cyprus.

Acknowledgements			
Contents			
Summary			
Introduction	Pages		
CHAPTER 1 - BASIC CONCEPTS OF PRESTRESSED CONCRETE			
1. Prestressing			
1.1 Definition of Prestressing	1		
1.2 Principles of Prestressing	1		
1.3 General Design Principles	4-7		
1.4 Effect of tendon position	7-11		
1.5 Equivalent loads	12-14		
1.6 Overload behavious of a Prestressted member	15-16		
1.7 Prestressing methods	16		
1.8 Materials	16-17		
1.8.1 Steel for Prestressing			
1.8.1.1 Introduction	17		
1.8.1.2 Importance of high strength steel	17		
1.8.1.3 Types of prestressing steels	17-26		
1.8.1.4 Stress-strain proporties for steel	27-30		
1.8.2 Concrete for prestressing			
1.8.2.1 Advantages of using high strength concret	31		
1.8.2.2 Cement type	32		
1.8.2.3 Ad mixtures	32-34		
1.8.2.4 Slump	34		
1.8.2.5 Curing	34-35		
1.8.2.6 Concrete Aggregates	35-36		
1.8.2.7 Strength of concrete	36-38		
1.8.2.8 Shrinkage	38-39		
1.9 Design Considerations			
1.9.1 Crack Control	40-41		
1.9.2 Shear	41-45		
1.9.3 P.S. Losses	46-47		
1.10 Comparison between Reinforced and Prestresed			
concrete			
1.10.1 What is reinforced?	48		

<u>Pages</u>

1.10.2 Behaviour of a simply supported beam	
subjected to bending	48-49
to bending	
1.10.3 Different Design procedure between	
Reinforced and Prestressed Concrete	
procedure	50-52
1.10.4 Strength design (comparison between	
R.C. and P.C.)	53-55
1.10.5 Reinforced concrete as compared with	
Prestressed Concrete	55
1.10.6 Different Grades of concrete	55-56
1.10.7 Response of R.C beams and P.S beams to	
load changes	56
1.10.8 General Differences between R.C	
and P.S beams	57
1.10.9 Comparison of R.C and P.S member as	
far as deflections are concerned	57
1.10.9.1 Deflection Stages of interest	59
1.10.10 Poison effect on R.C and P.S	
members	59
1.10.11 Advantage of Prestressed concrete over	
Reinforced concrete	60
1.10.12 Economics of Prestressed concrete over	
Reinforced Concrete	60
1.10.13 Resistance	62
1.10.14 Durability	63
CHAPTER 2 - PRESTRESSING CONSTRUCTION PROCEDURES AND	
SYSTEMS	
2.1 Introduction	65
2.2 Prestressing methods	66
2.3 Pretensioning Construction	66
2.3.1 General	
2.3.2 The iadea of Pretensioning	67-69
2.3.3 Brief description of the pretensional concrete	70-73
construction procedure	

2.3.4 Long-line prostressing operations	73-85
2.3.5 Pretensioning with Individual Molds	85-87
2.3.6 Pretensioning Benches	87-96
2.3.7 Stressing Mechanisms and Rotated Devices	97-105
2.3.8 Forms of Pre-tensioning Concrete	105-110
2.3.9 Tendon - Deflecting Mechanisms	110-118
2.3.10 Examples of Pre-tensioning plants	119-123
2.4 Post-Tensioning Procedures and systems	124
2.4.1 General	
2.4.2 The iadea of Post-tensioning	125-126
2.4.3 Methods of post-tensioning	126-130
2.4.4 Construction	
Procedure in Post-tensioned concrete	131-135
2.4.5 List of the most important post-tensioning	135
systems	
2.4.6 Description of Post-tensioning systems	136-143
2.4.7 Sheaths and Ducts for Post-tensioning tendors	144-147
2.4.8 Forms for Post-tensioned Members	147-149
2.4.9 Tensioning-Grouting through the photographs	150-151
(DYWIDAG SYSTEMS)	
2.4.10 Sometypes of Stressing jacks (TENSACIAIA	152
SYSTEMS)	
2.4.11 Post-tensioning equipment	153-154
2.4.12 Anchorages (Tensaciaia system)	155-156
2.5 Specifications for the Prestressed Concrete	157-165
2.6 Differences between pre-tensioning and	166-167
Post-tensioning method	
2.7 Summary	167

CHAPTER 3 -APPLICATIONS OF PRESTRESSING IN GENERAL

3.1	Introduction	168
3.2	Different types of structures	168-169
3.3	Different types of Prestressed Concrete	169-172
	Structures	
3.4	Bridges	172-181
3.5	Precast Construction	

	Pages
3.5.1 Introduction	182-183
3.5.2 Precast Members For buildings	184-193
3.5.3 Lift Slab Construction	194-195
3.5.4.Standard Bridge Girders	195-197
3.6 Shells and Folded Plates	197-199
3.7 Trusses and Space Frames	199-200
3.8 Water Storage Towers	201-204
3.9 Nuclear Containment vessels	205-206
3.10 Pavement	206-207
3.11 Marine Structures	208-210
3.12 Miscellaneous Structural elements	210-218
3.14 Prestressing for the anchoring of a large dam	218-219
3.15 External prestressing by "Freyssinet"	219-220
3.15.1 Applications of External Prestressing	221-222
3.16 Post-Tensioning of Floors and Ground Floor	223-226
Slabs by Freyssinet	
3.17 Applications of Freyssinet System in	227-231
Prestressed Concrete Technology	
3.18 Erection of structures using Freyssinet	232-233
3.19 Applications of P.C using Dywidag system	234-238
3.20 Application of Dywidag post-tensioning	239-241
system in bridges	
3.21 Use of Dywidag Post-tensioning steel	242-243
3.22 Post-tensioning with Unbonded Tendons	244-245
3.23 Use of Tensaccial Post-Tensioning	246
3.24 Use of Tesit System same Structures	247-248
3.25 Use of Tesit System	249-250
3.26 Prestressed Concrete Bridge	253
(Philipp Hozlmann)	
3.28 Prestressed Concrete Bridge in Nigeria	254-258
3.29 Overpass in Gyor for Road 82-83(Hidepito	
Vallalat)	259
3.30 Gulfaks C - The World's Largest Offshore	260
Concrete Platform	
3.31 Marine Structures (Photographs)	261

3.32 Byoyancy Structures

262

CHAPTER 4 - APPLICATIONS OF PRESTRESSED CONCRETE IN CYPRUS

4.1 Introduction	263
4.2 Reasons for the Limited use of	
Prestressed Concrete	263-264
4.3 Departments in the public sector which have	
used prestressed concrete	264
4.4 Private Companies which have used Prestressed	
Concrete in Cyprus	265
4.5 Pretensioning Method in Cyprus	265
4.5.1 Pretensioned beams (for the erection	
of Flyovers)	265-276
4.5.2 Pretensioned beams used in a factory	277
4.6 Full Scale Deflection Testing	278-281
4.7 Post-Tensioning Method in Cyprus	282-287
4.8 List of Applications of Prestressed Concrete	
in Cyprus	288-289
4.9 Future Application	289-290
4.10 Explanations on Photographs	291-294
Part of Photographs	295-398

CONCLUSION

399-400

REFERENCES

APPENDICES

DRAWINGS ("Rizoelia Paved Ditch" - "Kalavasos Water Dam")

ABBREVIATIONS - SYMBOLS - DATA