HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

PLG CONTROL OF ANIMAL FEED RATIOS PRODUCTION PLANT

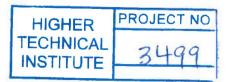
E. 1343

BY ALEXIS IOANNOU

JUNE 2004

HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING DEPARTMENT


DIPLOMA PROJECT

PLC CONTROL OF ANIMAL FEED RATIOS PRODUCTION PLANT

E.1343

BY ALEXIS IOANNOU

JUNE 2004

HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING DEPARTMENT

PLC CONTROL OF ANIMAL FEED RATIOS PRODUCTION PLANT

BY ALEXIS IOANNOU

In partial fulfillment of the requirements for the award of the diploma of technician engineer of electrical engineering department, H.T.I Nicosia, Cyprus

JUNE 2004

HIGHER	PROJECT NO
TECHNICAL INSTITUTE	3499

TABLE OF CONTENTS

ACKNOWLEDGEMENTS SUMMARY	2 3
1. INTRODUCTION	4
2. ABOUT PLCs	
2.2. PLC ARCHITECTURE 2.2.1. Central Processing Unit (CPU)	6
2.2.2. Memory	7
2.3. ADDRESSING FORMATS	
2.4. SCAN CYCLE	
2.5. TYPES AND FEATURES OF PLCs	13
3. PROGRAMMING	14
3.1. PROGRAMMING DEVICES	14
3.2. PROGRAMMING SOFTWARE	
3.3. LADDER PROGRAMMING	
3.4. LADDER PROGRAM INSTRUCTIONS	
4. THE ANIMALS FEED PRODUCTION PLANT	
4.1. ABOUT FEED PRODUCTION PLANTS	
4.2. RELIABILITY	
4.3. REQUIREMENTS AND SEQUENCE OF OPERATION OF THE PLA	
4.4. PARTS OF THE PLANT	31
4.4.1. Input devices	32
4.4.2. Output devices 4.4.3. ALLEN-BRANDLEY SLC500 PLC	33 33
4.5. ANIMAL'S FEED PRODUCTION PLANT LADDER PROGRAMS	34
4.5.1. Main program lad 2	3 4 35
4.5.2. Subroutine program lad 3	47
4.5.5. Suproutine program at 4	50
4.6. PROGRAM IMPROVEMENTS	
4.7. CONCLUSIONS	60
REFERENCES	61

APPENDIX 1. Instruction execution times

APPENDIX 2. SLC 500 I/O Modules specifications

LIST OF TABLES

TABLE 2.2.2-1.Program files	8
TABLE 2.2.2-2.Data files	9
TABLE 2.2.2-2.Data files TABLE 4.4.1-1.Input connections and description	32
TABLE 4.4.2-1. Output connections and description	33
TABLE 4.5.1-1.Bit file status stage 1	35
TABLE 4.5.1-2.Bit file status stage 2	36
TABLE 4.5.1-3.Bit file status stage 3	36
TABLE 4.5.1-4.Bit file status stage 4	37
TABLE 4.5.1-5.Bit file status stage 5	37
TABLE 4.5.1-6.Bit file status stage 6	38
TABLE 4.5.1-7.Bit file status stage 7	38
TABLE 4.5.1-8.Bit file status stage 8	39
LIST OF FIGURES	
FIGURE 2.2-1.Simplified circuit for DC input module	10
FIGURE 2.2-2.Typical AC output module circuit	10
FIGURE 2.4-1.Ladder program execution	13
FIGURE 4.3-1.Step by step process block diagram	30
FIGURE 4.4-1.Plant equipment layout	31
FIGURE 4.4-2.Input/Output wiring details	34
FIGURE 4.5-1.Main program LAD 2	42
FIGURE 4.5-2.Subroutine program LAD 3	48
FIGURE 4.5-3.Subroutine program LAD 4	52
FIGURE 4.5-4.Subroutine program LAD 5	56

ACKNOWLEDGEMENTS

I would like to express my thanks to Mr John Demetriou and Mr John Pampouris for giving to me the necessary equipment, manuals and software and for their whole contribution during the preparation of this project.

PLC CONTROL OF ANIMAL FEED RATIOS PRODUCTION PLANT

BY

ALEXIS IOANNOU

SUMMARY

This project covers all background of PLCs and also gives a complete and verified solution to the development of the automatically controlled feed ratios production plant. Chapter 2 contains the history of the PLC its structure the capabilities and features and information about the operation of the PLC. Chapter 3 analyses and compare the different types of programming devices, explains ladder programming language and instructions. Chapter 4 contains information about the feed production plant, gives the requirements for the process. The solution to the problem is also present and the four ladder programs. The operation of each program is explained and the purpose of each rung or instruction is stated to help the reader to understand the given solution. At the end of this chapter a statement of the improvements that should be made when this system will be installed in a real environment is given followed by the conclusions.