AN ESTIMATE OF THE ENGINEERING PROPERTIES OF SOILS

Project Report submitted by:

LOUCA LOUCAS & PAVLOPOULOS PAVLOS

In part satisfaction of the award of Diploma of Technical Engineer in Civil Enngineering of the Higher Technical Institute,Cyprus.

Project supervision:M.poullaides Senior Lecturer in Civil Engineering, H.T.I.

External Assessor: K.KYROU

Type of project: Group

June, 1991

HIGHER	121011
TEOHUNCAL	1784
INCLUCIO	

One of the most important factor that a civil engineer will have to consider before commencing the design of any project are the engineering properties of any soil.

Soils are classified into different groups according to their particle size and their engineering properties. The object of soil classification is to provide a basic whereby engineers can group soils according to their physical characteristics and appearance for the purposes of comparing different soils, communicating their properties and to a limited extent assessing their suitability for engineering use.

In this particular project the engineering properties of both COARSE GRAINED (sands, gravels) and FINE GRAINED (clays) will be examined. In order to classify the soils, index tests, compaction test and shear strength tests were performed.

For coarse grained soils, sieve analysis, proctor test and direct shear test were carried out. The sieve analysis test was performed in order to obtain the grading curves of its particle sizes. The proctor test was carried out so as to determine the optimum moisture content at which maximum compaction is obtained The object of shear test was to estimate the angle of shear resistance.

For the fine grained soils, Atterberg limit tests (Liquid limit and plastic limit) and undrained triaxial test were carried out. For determing the liquid limit of soils the cone penetrometer method was used which is actually the first time used in H.T.I Laboratories. By performing Atterberg limit tests (Liquid limit, plastic limit, Liquidity index and plasticity idex) were estimated in order to classify soils. The objectives of the undrained triaxial test was to determine the angle of shear resistance and also the undrained shear strength of the soil.

In order to have a representative picture of the different types of soils in Cyprus soil samples were taken from various places. Soil samples were taken from Paphos, Limassol, Larnaka and Nicosia.

Finally, hypothetical bearing capacity of foundations of each sample was calculated based on their engineering properties estimated before. Also possible engineering applications in civil engineering works were discussed.

-1-

CONTENTS

ş.

I II IV

ACKNOWLEDGEMENTS	
CONTENTS	
ABSTRACT	

INTRODU	CTION	1
CHAPTER	1: THE CLASSIFICATION AND PROPERTIES OF SOILS	2
1.1 1.2 1.3 1.3.1 1.3.2 1.3.3 1.3.4	Nature and origin of rocks and soils Soil description Soil classification systems The purpose of classification systems Analysis of grading curves Cassagrande's extended classification system The unified soil classification system	2 2 4 4 5 6
CHAPTER	2: LABORATORY TESTING	11
2.1 2.2 2.3 2.3.1 2.3.2	Introduction The purpose of soil testing Laboratory tests for soils Coarse grained soils Fine grained soils	11 11 12 12 12
CHAPTER	3: SIEVING ANALYSIS TEST	15
3.1 3.2 3.3 3.4 3.5	Scope Apparatus Procedure Theory Engineering practice	15 15 15 17 20
CHAPTER	4: PROCTOR TEST	21
4.1 4.2 4.3 4.4 4.5	Scope Apparatus Theory Procedure Application	21 21 23 23 24
CHAPTER	5: DIRECT SHEAR TEST	26
5.1 5.2 5.3 5.4 5.5	Scope Apparatus Theory Procedure Applications	26 26 28 29 29

CHAPTEI	R 6: MOISTURE CONTENT AND INDEX TESTS	31
6.1 6.2 6.3 6.3.1 6.3.2 6.3.3 6.4 6.4.1 6.4.2 6.4.3 6.5	Scope Moisture content in soils Liquid Limit-cone penetrometer Method Apparatus Theory Procedure PLastic limit Apparatus Theory Procedure Engineering properties	31 33 33 35 35 36 36 36 36
CHAPTER	<u>? 7:</u> THE TRIAXIAL TEST	38
7.1 7.2 7.3 7.4 7.5 7.5.1 7.5.2	Scope Apparatus Theory Procedure-Testing Applications Applications to foundations Applications to sensitive clays	38 39 44 44 44
CHAPTER	R 8: BEARING CAPACITY OF FOUNDATIONS	45
8.1 8.2	Theory Footings	45 46
CHAPTER	9: EXPERIMENTAL RESULTS	50
9.1 9.2 9.3 9.4 9.5 9.6 9.7	Soil A: Group of houses, Ayia Paraskevi, Lakatamia Soil B: Hawai Beach Hotel, Amathus, Limassol Soil C: Kofinou Larnaka-Road-Backfilling Soil D: Azia Beach Hotel-Chloraka-Paphos Soil E: Kofinou Larnaka-Road-Sub-base Soil F: Building of Insurance Organization of Agricultural- Nicosia Final results	51 64 77 90 103 116 131
9.8	Hypothetical Bearing Capacity of Foundations	134
CHAPTER	R 10: CONCLUSIONS	137
APPENDI	ICES	140

REFERENCES

141