HIGHER TECHNICAL INSTITUTE CIVIL ENGINEERING COURSE

DIPLOMA PROJECT

HYDROLOGICAL ANALYSIS

a shaka a shekara ta s

EVAPOTRANSPIRATION

C/594

YIANNAKIS KARAVIAS

1991

ł

ACKNOWLEDGEMENTS

My sincere thanks and appreciation are expressed for my supervisor Mr. Nicos Kathijotes who assisted me greatly during the preparation of this project in giving me all information and guidance needed.

Also I wish to express my thanks to Mr. Kyriakos Solom of the Geological Centre who was very willing to help me and give me all advice and information needed from his department.

Lastly but not the least my appreciation and thanks go to Miss Elena Poyiatzi for her remarkable advice and help.

SUMMARY

An explanation and illustration of operation of a lysimeter is given in this project. For this purpose a lysimetric station was constructed at H.T.I area and its purpose was to take real evapotranspiration measurements and make the studies of future H.T.I students more feasible. An other of the main purposes of its construction is to give information to other Mediterranean Universities.

The construction of the lysimeter was under my supervision with the constant assistance of my supervisor. Mr. Kathijotes.

In this project a detailed study took place about the characteristics and components of soil (nutrients, phosphorus etc) so as to find the more suitable to be placed in the lysimeter.

Another subject which was referred to was the basic characteristics of wastewater which are important in agriculture.

The Agriculture Department was contacted as well as the Geological Centre from where valuable information was received and also maps were provided, showing the kinds of soil found in different places in the island.

CONTENTS

INTRODUCTION

CHAPTER 1	BASIC CHARACTERISTICS OF SOIL	
1.1	Nature of soil	1
1.2	Agricultural and engineering soil	5
1.2.1	Engineering definitions	6
1.3	Particle size analysis	7
1.4	Plasticity of fine grained soil	8
1.4.1	Determination of liquid and plastic limit	9
1.5	Soil description and classification	11
1.5.1	Soil description details	12
1.5.2	The British Classification System	16
1.5.3	The unified classification system	16
1.6	Soil compaction	16
1.6.1	Proctor test (laboratory)	26
1.7	Porosity	30
1.8	Permeability	31
1.8.1	Falling head method	31
1.9	Chemical components of soil	34
1.10	Kinds of soil in Cyprus	37
1.11	Appropriate soil to be used in lysimeter	38
1.12	Ways of placing the soil in the lysimeter	38
CHAPTER 2	ENGINEER SYSTEMS FOR WASTEWATER TREATMENT	ר מאס
2.1	Introduction	41
2.2	Quality of water	42
2.2.1	Physical water characteristics	42
2.2.2	Chemical water characteristics	43
2.3	Wastewater characteristics	46
2.4	Application of wastewater	49
2.5	Analysis of wastewater	52
2.6	Terminology of wastewater treatments	54

<u>CHAPTER</u>	<u>3</u>	LYSIMETER
----------------	----------	-----------

3.1	Definition	57
3.2	Construction	58

3.3	Operation	68
3.3.1	Operation points	68
3.3.2	Evapotranspiration	69

GENERAL COMMENTS