HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DEVELOPMENT OF A COMPUTER/MICROCONTROLLER INTERFACE

NICOLAOU A. COSTAKIS (E/905)

DIPLOMA PROJECT

Development of a Computer/microcontroller interface

Project Number: E.905

Nicolaou A. Costakis

Academy year

1993/1994

Development of a Computer/microcontroller interface

BY

NICOLAOU A. COSTAKIS

Project report submitted in partial fulfilment of the requirements for the award of the Diploma of Technician Engineer in Electrical Engineering of the

HIGHER TECHNICAL INSTITUTE

NICOSIA, CYPRUS

June 1994

Project Number E/905

Project Supervisor :Mr S. Hadjioannou

External Assessor:

Type of Project :Individual X

Group

CONTENTS

Page No.)
ACKNOWLEDGEMENTS1	
SUMMARY	
INTRODUCTION5	
CHAPTER 1: Block diagram	
Interfacing Card8	
8031 microcontroller 9	
Stepper Motor Application	
CHAPTER 2: The 8031 microcontroller and the 8255 PPI	
The 8031 microcontroller architecture	
The 8255 programmable peripheral interface	
CHAPTER 3: Serial and Parallel Data Communication	
Serial data communication 25	
Synchronous and asynchronous transmission	
Simplex and duplex transmission	
ASCII code 27	
Parity check 27	
Baud rate 27	
Standards 27	
RS-232 interface standard 28	
The MAX232 driver/receiver 29	
The 8031 29	
Parallel data communication 30	
Paratiei data communication	
CHAPTER 4: Multi purpose board	
Specifications and features 34	
The 8031 microcontroller design 34	
Memory decoding	
Connectors 40	
Construction 44	
Construction44	
CHAPTER 5: Computer interface cord	
CHAPTER 5: Computer interface card	
Circuit Analysis 50 8255A - Mode 2 50	
DIL Switches	
Construction	
CITADTED 6. Stamped Mater Docition and Superior Control	
CHAPTER 6: Stepper Motor Position and Speed Control	
Half/Full Step Mode	
Stepper Motor Driver	
Components	

CHAPTER 7: Interfacing an Input Keyboard Key-debounce Keyboard Layout	60
CHAPTER 8: Combine all Together	56
CHAPTER 9: Software	71
PC programming	72
Assembly program	
CHAPTER 10: Troubleshooting the microcontroller	78
Free running	79
Signature analysis	30
Logic analysis	
In circuit emulation	31
Diagnostic software	34
APPENDIX A: PASCALprograms	
APPENDIX B: Assembly programs	1 79
APPENDIX C: Block Diagrams	
APPENDIX D: Single Line Diagrams	206
APPENDIX E: Printer Circuit Boards (PCBs)	211
APPENDIX F: 8031 Operational Code Mnemonics	220
APPENDIX G Data Sheets	228
REFERENCE:	243

ACKNOWLEDGEMENTS

I would like to express my thanks to my project supervisor Mr. S. Hadjioannou for his valuable guidance, and assistance throughout the completion of this project.

Gratitude is expressed to Mr. C. Theopemptou for his valuable advice for the completion of the project.

Thanks and appreciation is also expressed to the personnel of the Electrical Department of the H.T.I. for their help and suggestions given at some stages of the project.

Finally I wish to thank my parents for their financial support.

Nicolaou Costakis

To my family.

SUMMARY

Development of a Computer/microcontroller interface BY NICOLAOU A. COSTAKIS

The objectives of this project are to design, construct and test an 8031 microcontroller and a computer interface card. Also, to develop the appropriate computer and microcontroller software so that the computer and microcontroller interchange information.

The computer and microcontroller should have both serial and parallel connections and the language for the computer should be either Pascal or Assembly.

In order to fulfil the above requirements two printer circuit boards were constructed. These PCBs are:

- a multi purpose board based on the 8031 microcontroller
- a computer interface card based on the 8255 PPI.

The work was performed and completed successfully. All the software and hardware have been done and also some additional work completes the purpose of the project.

Some of the additional software features are:

- loading machine code programs in the PC
- examine/modify memory locations
- move memory
- fill memory
- change the communication baud rate between the PC and the μC
- downloading a program from the PC to the microcontroller
- executing the download program
- read the contents of the ROM or RAM of the μC

- · run program at specified location
- monitoring the 8031 programs

Also in addition to the above, a stepper motor position and speed controller application was designed and constructed. For this application software and hardware were designed. The new PCBs which were constructed are:

- a stepper motor driver,
- a small keyboard, and
- two small power supplies (+5V and +12V).

All software and hardware are explained later in this project.

This project assumes that the reader has some background in digital logic and microprocessor circuits.

INTRODUCTION

The first objective of this project is to design construct and test a computer interface card. This card has three eight-bit ports which are terminated to an appropriate socket. These three ports can be used as parallel ports since the combination of them has the ability to give I/O ports and control signals(handshake).

The second objective is to design construct and test an 8031 microcontroller. To the design of this microcontroller the need of serial and parallel communication ports were taken in mind. Also during the design of the microcontroller some problems with the assembler of the 8031 where observe, which limits the maximum assembly program to be only 32K (this has affected the design of the hardware and software). Therefore, the maximum ROM on board was limit to 32K with 8K RAM for data storage. But, because the RAM is used to download programs from the computer to the 8031 microcontroller and then executed them (explain later), the design of the microcontroller is made such that the EPROM may be smaller than 32K (8K or 16K). By changing some jumpers the memory map of the RAM is shifted below 8000h (32K) in order to be able to download programs in it.

The third, and the most difficult, objective of this project was to succeed communication between the 8031 microcontroller with a Personal Computer (PC) IBM compatible. For this perposed both serial and parallel communication were tried in order to find which of them is the most practical and easy to applied.

Finally, although an application was not a mandatory one, an application with stepper motors was design construct and tested, in order to demonstrate some applications and capabilities of the project. In addition the above, in order to make the 8031 microcontroller and the stepper driver independent from the PC, a small keyboard was constructed to control the speed and the position of the stepper motors.

The main advantage of using PCs to control the speed of motors is that using the IBM PC gives more capabilities to the user to control the motor. The combination of the PC and the μ C gives the ability to the user to control the speed of the motor from a long distance, since serial communication is used and bulky cables are affected.

The control program is written in PASCAL language which although is a structured programming language, is easy to be modified since all the program is written using procedures, functions and units.

The final conclusion using this system is that it speeds up the work of an 8031 user since he can download the prototype program to the 8031 and see if the program is working properly. The time of erasing and programming the EPROMS is affected.