HIGHER TECHNICAL INSTITUTE ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DESIGN OF THE ELECTRICAL SERVICES OF AN OFFICE BLOCK

KOUMIDES MICHALAKIS

E/1017

1996

HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING COURSE

DESIGN OF THE ELECTRICAL SERVICES OF AN OFFICE BLOCK

KOUMIDES MICHALAKIS E:1017

JUNE, 1996

ELECTRICAL SERVICES OF AN OFFICE BLOCK

Project Report Submitted by KOUMIDES MICHALAKIS

In part satisfaction of the award of diploma of

TECHNICIAN ENEGINEER

in

ELECTRICAL ENGINEERING

of the

HIGHER TECHNICAL INSTITUTE CYPRUS

Project Supervisor: Mr George Kourtellis

Type of project: Individual

JUNE, 1996

TO MY PARENTS, CHRISTODOULOS AND THEKLA AND TO MY BROTHERS DEMOS AND MARIOS

.

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my project supervisor Mr. George Kourtellis, for his valuable advise and quidance during the whole process of this project, and the useful informations about electrical installations learned to us through lectures during the first, second and third year in H.T.I.

Finally, I would like to thank everyone who contributed in any way in accomplishing this work.

Koumides Michalakis

H.T.I, June 1996

GENERAL INTRODUCTION

The design of the electrical services of an office block are represented in this project.

The building consist of the basement the ground floor the mezzanine the first second third fourth and fifth floor.

The main objectives of this project are:

- 1. To design the complete electrical installation of an office block which include the following:
 - (a) Power
 - (b) Lighting
 - (c) Telephone distribution.
- 2. To provide all necessary diagrams, schedule of materials and costing including labour.

Terms and Conditions:

- 1. Three-phase Vrms 5OHz, T.T. earthing system.
- 2. The work must be carried out with reference to the architectural drawing provided.
- 3. The IEE Wiring Regulations 16th Edition as currently amended and the local EAC conditions of supply must be complied with.
- 4. The illumination design must be in accordance with the CIBS code
- 5. CYTA requirements were taken in to consideration.
- 6. The external resistance, is taken to be equal to $ze=0.5\Omega$

CONTENTS

+

		PAG
	CHAPTER 1: ILLUMINATION DESIGN	1
	1.1 Introduction	2
	1.2 Methods of illumination calculations	2
	1.3 Definitions and units	3
	1.4 Aesthetic appearance	5
	1.5 Average illuminance	5
	1.6 Glare	6
	1.7 Rules for energy efficient lighting	7
	1.8 Procedure of illumination design	9
	1.9 Example of illumination design	10
	1.10 Tables of illumination design	12
	CHAPTER 2: PROTECTION AND EARTHING	18
	2.1 Introduction	19
-	2.2 Overcurrent Protection	19
	2.3 Protective Devices	19
	2.4 Advantages and Disadvantages of mcb's	19
alternation a	2.5 Overload protection for the conductors	20
	2.6 Short circuit protection	20
	2.7 Operation of the MCB	21
•	2.8 Electric shock protection	22
	2.9 EEBADOS METHOD	23
	2.10 The Residual current circuit breaker (RCCB)	24
	2.11 Protection against fire and harmful thermal effects	25
	2.12 Protection against burns	25
	2.13 Earthing Systems	25
	2.14 Electrode termination	26
	2.15 Earth fault loop impedance (E.F.L.I)	26
	2.16 Requirements for protection for special installations	28

E

	CHAI	PTER 3: INSPECTION AND TESTING	30
	3.1	Introduction	31
	3.2	Visual inspection	31
	3.3	Testing	31
	3.3.1	Continuity of ring final circuit conductors	32
	3.3.2	Continuity of cp.c and metalic parts	32
	3.3.3	Insulation Resistance	32
	3.3.4	Polarity Test.	33
	CHAP	PTER 4: ELECTRICAL INSTALLATION	35
	4.1 ln	stallation Design Procedure	36
'b	4.2 D	esign calculators of a typical lighting circuit	37
1-1>	4.3 Ta	ables for lighting design results	42
+	4.4 D	esign calculations of a typical ring circuit	45,
	4.5 Fi	inal results for all socket outlet circuits	50
	4.6 S	upply for water pump.	51
	4.7 S	upply for lift room.	53
	CHAR	PTER 5: DISTRIBUTION BOARD AND SUPPLY CABLES	56
	5.1 D	esign calculations for the distribution boards	57
	ar	nd balancing of phases.	
-1	5.2 M	AIN PANEL	69
	СНАР	PTER 6: TELEPHONE INSTALLATION	70
	6.1 S	ome Definitions	71
	6.2 U	nderground and overheat connection	72
	6.3 C	onduit sizes in telephony	73
	6.4 D	istribution Cases	74
	6.5 S	oint Pits	75
	6.6 E	arthling in telephony	75
	6.7 P	rohibited Case for installation of telephone conduits	77

6.8 General information about the telephone installation	78
6.9 Conduit Schematic	79
6.10 Wiring Schrematic	80
6.11 Lists of connections	81
CHAPTER 7: COSTING	
7.1 General	90
7.2 Cost Analysis Tables	91
7.3 Results	92
CHAPTER 8: CONCLUSIONS	