DESIGN MODIFICATIONS OF

A HOT WATER BOILER

FOR HEATING

Project Report Submitted by

MAVRONICOLAS ANASTASIOS

in part satisfaction of the award of

Diploma of Technical Engineer in

Mechanical Engineering

of the

HIGHER TECHNICAL INSTITUTE - Cyprus

Project Supervisor: P. Tramountanellis Lecturer in Mechanical Engineering H.T.I.

External Assessor:

Type of project:

Individual

JUNE 1988

INTRODUCTION.

One of the main components of a central heating or hot water supply system, is the Hot Water Boiler. In fact it is the most costly component although is very simple in construction; it is just like two empty barrels one inside the other with water filling the space between them. The water is heated by burning a fuel, usually oil, in the inner barel.

Its operation is also simple. However, the design of such a simple equipment is extremely difficult. This is extraordinary but it is true.

Boilers are classified as pressurised vessels and are treated as such. Their design and manufacture is governed by Internationally recognised standards from which the manufacturer can not decline.

Boilers design entails specific knowledges in the field of Thermodynamics. Apart from the basic formula of heat transfer, equations and factors derived from experience are greately involved.

In this project, an approach is made from the design point of view, although the title of the project states "Design Modifications". This is because it is of my belief that "Design Modifications" is a step further from actual design. In doing modifications, one must pass from the design stage, and he must be expert in finding ways of improvement or changes in design. Therefore most of the effort was given in the design of the boiler rather than any other stage.

Having in mind that this project is not a kind of text book, it has been avoided overwritting of excess theories, and great effort has been laid in the actual design process of the boiler.

List of contents

INTRODUCTION

Page

	_	
CHAPTER 1:	BACKGROUND THEORIES	
1.	THE MODES OF HEAT TRANSFER (Conduction, Radiation, Convection, Conductance and overall treat tran- sfer coefficient, general equation of heat transfer)	1 – 2
1.2 1.2.1	HEAT TRANSFER IN HOT WATER BOILERS	3 – 4 5 – 6
1.2.2		7 - 8 9 -13
1.3	The tubes	14
1.3.1		15
1.3.2	Ũ	15
	Determination of tube length through diamensional analysis	16-18
1.4	COMBUSTION BASIC PRINCIPLES	19
1.4.1	0 0	19
1.4.2	Combustion calculations	19-21
1.4.3	Adiabatic flame temperature	22-24
1.5	BOILER DESIGN CRITERIA	25-26
1.6	THE BS 855:1976	27
CHAPTER 2:		
2.	BOILER CONFIGURATIONS AND DESIGN CALCULATIONS	

.2.1 BOILER CONFIGURATIONS 28 2.2 29 . DESIGN CALCULATIONS 29 2.2.1 Heat transfer in a boiler furnace 2.2.2 Calculating the net heat released 29-34 by combustion (eq. 8) 2.2.3 Calculating the heat absorbed by 35-38 the water in a furnace Solution of eq. 12 2.3 38 Calculating the furnace absorbtion rate 38 2.4 2.5 Calculating the total furnace absorbtion rate

......

2. 2. 2. 2.	7 8	Calculating furnace efficiency Design cases Summary of design cases Calculation of tubes length	49 49 51 52-65
CHAPTE		COMMENTS ON DESIGN CASE 1	52-05
	1		
3. 3.		Heat transfer in boiler furnace	66-68
3.		Heat transfer in boiler tubes	68-75
0.	0	Selection of a design case	76-78
CHAPTE.	<u>R 4</u> :	DESIGN CONSTRAINS SPECIFIED BY BS 855: 1976	
4.	1	Design pressures and flow	
		temperatures.	79
4.	2	Materials	79
4.	3	Design stresses	80
4.	4	Thickness of shell	81
4.		Flat plate margine	81-82
4.		Minimum thickness of flat plate	83
4.		Minimum thickness of tubes	83
4.	8	Minimum thickness of cylindrical	~ .
	-	shells	84
4.	9	Manufacture and Workmanship	84
CHAPTE	<u>R 5</u> :	Assumptions	85
CHAPTE	R 6:	CONCLUSSIONS AND COMMENTS	
		ON THE OVERALL WORK DONE	86
LIST O	F APPE	NDIXES	
	Б.		07
A1.		ct's particulars	87
A2.	Diese	l oil characteristics	88
A3.	Creat	fin boot of gogog	89
A4.		fic heat of gases fic heat of liquids	90
A5. A6.	-	stion constants	91
A7.		amount of excess air to fuel	51
A/.		ng equipment	92
A8. 1		ge specific heat of fuel V _s	
110. 1		rature graph	93
A8.2		ble heat of gases V _S Flue gas	
		rature graph	(folded)
A9.	-	ntration factor K V _S Firing density	94
A10.	Normal total emissivity values		
A11.	Beam lengths for gas radiation		
A12.1		PROGRAM calculating C _p and h values	100
 Antonio constructivo del 1994 (10.0000) 		с р	

A12.2	BASIC PROGRAM calculating heat absorbtion		
	rate and furnace exit temperatures	folded	
A12.3	BASIC PROGRAM calculating tube length	folded	
A13.	Furnace absorbtion rate V $_{ m S}$ furnace		
	exit temperature graph	folded	
A14.	Viscosity, thermal conductivity, specific		
	heat of gases V $_{s}$ temperature graph	101	
A15.	Thermophysical properties of gases at		
	atmospheric pressure.	102	
A16.	Dimensionless groups	103	
A17.	Effect of temperature upon Thermal		
	conductivity of metals and alloys.	103	
A18.	Conversion of units table.	104-10	26

BIBLIOGRAPHY

107