

MECHANICAL ENGINEERING COURSE

DIPLOMA PROJECT

DESIGN OF AN AIR CONDITIONING SYSTEM FOR A BUILDING

M/966

KARAMOUZIS ANGELOS

2003

H.T.I

MECHANICAL ENGINEERING COURSE

DIPLOMA PROJECT

6

DESIGN OF AN AIR CONDITIONING SYSTEM FOR A BUILDING

M/966

KARAMOUZIS ANGELOS

2003

DESIGN OF AN AIR CONDITIONING SYSTEM FOR A BUILDING

by

Angelos Karamouzis

Project Report

Submitted to

the Department of Mechanical Engineering

ĩ

of the Higher Technical Institute

Nicosia Cyprus

in partial fulfillment of the requirements

for the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

June 2003

ACKNOWLEDGEMENTS

In working in this project, I have been helped from some persons whom I would like to thank.

First of all I would like to express my appreciation for the help and the guidance given to me throughout this project by my supervisor Mr. Theodoro Symeou.

My appreciation also extends to my father, Mr. George Karamouzis, who shares his knowledge with me and be patient enough from the very first to the last point to accomplish this project.

1

Finally, I would like to thank Mr. Tasos Stasis and Mr. Trifonas Christoforou for their help in use of the "HEVACOMP" program.

CONTENTS

ĩ

Table of contents

	Subject	Page				
	ACKNOWLEDGMENTS					
	SUMMARY					
INTRODUCTION						
	<u>PART A</u> CHAPTER 1: THERMAL TRANSMITTANCE (U-value)					
	 1.1 Introduction 1.1.1 Thermal resistance of materials (R) 1.1.2 Thermal conductivity (k) 1.1.3 Surface resistances 1.1.4 Airspace resistance 	1 2 2 3 3				
	 1.2 Calculations of U-values 1.2.1 External walls 1.2.2 Internal walls 1.2.3 Roof 1.2.4 Floor 1.2.5 Wooden doors 1.2.6 Double glazing windows/doors 	4 6 8 10 11				
	1.3 Summary of U-values	13				
	CHAPTER 2: DESIGN CONDITIONS					
	2.1 Introduction	14				
	2.2 Selection of design conditions	14				
CHAPTER 3: AIR CONDITIONING LOADS						
	3.1 Introduction	15				
	3.2 Cooling load3.2.1 Cooling load estimation3.2.2 Cooling and dehumidification load calculations	16 16 17				

-	-	-	TT				
3.	.2.	3	Н	eat	g	am	S
							-

	5.2.5 Heat gains	18			
	3.3 Heating load3.3.1 Heating load estimation3.3.2 Heating load calculations	21 21 21			
	 3.4 Load calculations 3.4.1 Introduction 3.4.2 External walls information 3.4.3 Internal walls information 3.4.4 External roof information 3.4.5 Window information 3.4.6 Floor information 3.4.7 Other parameters 	24 24 25 25 25 26 26			
¥	3.5 Results from the "HEVACOMP" program	26			
<u>PART B</u> CHAPTER 4: SELECTION OF AIR CONDITIONING SYSTEM					
	 4.1 Classification of air conditioning systems 4.1.1 All-air systems 4.1.2 All-water systems 4.1.3 All and water systems 	54 55 56 56			
	4.2 System selection	57			
CHAPTE	R 5: CALCULATION OF VOLUME FLOW RATE				
	5.1 Introduction	60			
	5.2 Required volume flow rate	60			
CHAPTER 6: DIFFUSERS AND GRILLES					
	6.1 Introduction	62			
	6.2 Arrangement of supply and return air devices	62			
	6.3 Supply diffusers	63			
	6.4 Return grilles	64			

CHAPTER 7: DUCT SIZING

6

	7.1 Introduction	66
	7.2 Velocity method	66
	7.3 Equal-friction method	67
	7.4 Static regain method	67
	7.5 Sizing of the ductwork	67
	7.6 Hydraulic resistance	72
CHAPTER	8: SELECTION OF THE APPROPRIATE MACHINERY AND EQUIPMENT	
	8.1 Heat pump chiller selection	81
	8.2 Air handling units (A.H.U's) selection	83
	8.3 Pump selection	88
	8.4 Insulation	88
	8.5 Anti-vibration mountings	89
	8.6 Fittings	89
	8.7 Controls	91
<u>PART C</u> CHAPTER	9: MAINTENANCE	
	9.1 Introduction	92
	9.2 Heat pump chiller	92
	9.3 A.H.U's	93
	9.4 Ducts	94
	9.5 Diffusers	94

	9.6 Pipes	95
	9.7 Pumps	95
CHAPTER 1	0: COST ANALYSIS	96
CHAPTER 1	1: PROJECT REVIEW	97
REFERENCES		
APPENDIX I APPENDIX I APPENDIX I APPENDIX V APPENDIX V	2S: (Tables) I(Chiller Catalogue) II(Air Handling Unit Catalogue) V(Ductwork Elements Catalogue) V(Supply diffusers and return grilles Catalogue) V(Pumps Catalogue) VI(Thermometers and pressure gauges Catalogue)	
	(Duffer Tenks Cotalogue)	

APPENDIX VIII......(Buffer Tanks Catalogue) APPENDIX IX......(Expansion Tanks Catalogue)

SUMMARY

The aim of this project it to design an Air Conditioning System for a building. The building is a theatre of a school in Paphos.

Architectural drawings of the building were provided. Design conditions were supplied while, ambient condition were based collected from the Metereological Services.

Energy conservation and noise level were considered as major factors in the design of the system. The thermal load of the building for heating and cooling were calculated using the "HEVACOMP" program.

Y.

The project is divided into three parts. Part A deals with the calculation of the cooling and heating loads. Part B deals with the selection of the system, the diffusers and grilles, the ductwork and the selection of the equipment and final, Part C which deals with the maintenance of the system and the cost analysis.

Finally, a complete set of mechanical drawings is being provided in which the location of all air conditioning equipment are illustrated.

INTRODUCTION

In 1906, Mr. Cramer, an engineer, from North Carolina-USA, used the term "Air Conditioning" for the first time. By 1911, Air Conditioning had became a branch of engineering. Twenty years later, Air Conditioning could be found in cars, homes, train e.t.c.

By 1965 10% of the buildings were air conditioned. By 1995, more than 75% of the buildings were air conditioned and in some portions of the south, 90% of buildings have comfort atmospheric conditions.

A desirable atmospheric condition aims to the comfort of the occupants. Comfort conditions imply a specific temperature, humidity, velocity and cleanness of air in the space, and can be achieved with a complete Air Conditioning System.

Historically air-conditioning has implied or otherwise improving the indoor environment during the warm months of the year. Nowadays, air conditioning refers to year round automatic control of temperature, moisture content, cleanliness, air quality and circulation as required by occupants.

The aim of this project is to design an Air Conditioning System for a building by taking into consideration the energy conservation and the noise level.

ii

According to the above classifications the following system was selected:

- A comfort air conditioning system
- A year-round air conditioning system
- A central station system

¥.

The system selected is the All-air central system.