HIGHER TECHNICAL INSTITUTE

MEGHANICAL ENGINERRIG DEPARTMENT

DHPLONIA PROJECT

AN INVESTIGATION INTO THE DESIGN ASPECTS OF DOMESTIC AND COMMERCIAL OIL BURNERS

NHCHIMH, TEHMARKEZOS

MHOST

JUNE 2003

## **HIGHER TECHNICAL INSTITUTE**

# MECHANICAL ENGINEERING DEPARTMENT

## **DIPLOMA PROJECT**

# AN INVESTIGATION INTO THE DESIGN ASPECTS OF DOMESTIC AND COMMERCIAL OIL BURNERS

## **MICHAEL TSIARKEZOS**

## **M/1051**

**JUNE 2008** 



1

### AN INVESTIGATION INTO THE DESIGN ASPECTS OF DOMESTIC AND COMMERCIAL OIL BURNERS

### **OBJECTIVES**:

- 1. To conduct an investigation into the various types of domestic and commercial oil burners.
- 2. To describe with reference to drawing and diagrams each type.
- 3. To write down design, constructional operational characteristics, heat loss calculations, burner and unit sizing and controls.
- 4. To present service and maintenance features for efficient and economical operation.

### (M/1051)

## MICHAEL TSIARKEZOS

### PROJECT SUPERVISOR: Mr Panayiotis Tramountanellis

#### PROJECT REPORT

#### SUBMITTED TO

#### THE DEPARTMENT OF MECHANICAL ENGINEERING OR THE HIGHER TECHNICAL INSTITUTE

#### NICOSIA – CYPRUS

#### IN PARTIAL FULFILLMENT OR THE REQUIREMENTS FOR AWARD OF THE DIPLOMA OF MECHANICAL ENGINEERING

#### JUNE, 2008



## **CONTENT:**

| No | TITLE                       | PAGE |
|----|-----------------------------|------|
| 1  | ACKNOWLEDGEMENT             | 6    |
| 2  | ABSTRACT                    | 7    |
| 3  | INTRODUCTION                | 8    |
| 4  | DOMESTIC OIL BURNERS AND    | 9    |
|    | THEIR METHOD OF PREPARING   |      |
|    | FUEL FOR COMBUSTION         | 1    |
| 5  | HIGH PRESSURE GUN TYPE      | 12   |
|    | BURNER                      |      |
| 6  | LOW PRESSURE ATOMIZING      | 20   |
|    | BURNER                      |      |
| 7  | COMMERCIAL OIL BURNERS      | 29   |
| 8  | ROTARY BURNERS              | 34   |
| 9  | VAPORIZING POT-TYPE BURNERS | 37   |
| 10 | DETERMINING THE GPH RATE OF | 39   |
|    | THE OIL BURNER              |      |
| 11 | COMBUSTION CHAMBERS I       | 43   |
| 12 | COMBUSTION CHAMBERS II      | 46   |
| 13 | TANK PIPING                 | 48   |
| 14 | AUTOMATIC OIL BURNER        | 49   |
|    | CONTROLS                    |      |
| 15 | CONTROL SYSTEMS STEAM       | 64   |
| 16 | CONTROL SYSTEMS HOT WATER   | 66   |
| 17 | CONTROL SYSTEMS WARM AIR    | 68   |
| 18 | CONTROL SYSTEMS FOR         | 69   |
|    | VAPORIZING BURNERS          |      |
| 19 | ZONE CONTROL                | 72   |
| 20 | ADJUSTING FOR HIGHER        | 74   |
|    | COMBUSTION EFFICIENCY I     |      |
| 21 | ADJUSTING FOR HIGHER        | 82   |
|    | COMBUSTION EFFICIENCY II    |      |
| 22 | FIRING THE NEW OIL BURNER   | 84   |
| 23 | SERVICING NOZZLE PROBLEMS   | 87   |

| 24 | SERVICING IGNITION PROBLEMS   | 90  |  |
|----|-------------------------------|-----|--|
| 25 | SERVICING PUMPS AND PRESSURE  | 92  |  |
|    | REGULATING VALVES             |     |  |
| 26 | COMBUSTION PROBLEMS           | 96  |  |
| 27 | EXCESSIVE FUEL                | 98  |  |
|    | OIL CONSUMPTION               |     |  |
| 28 | SERVICING POT-TYPE VAPORIZING | 100 |  |
|    | AND LOW PRESSURE GUN TYPE     |     |  |
|    | BURNERS                       |     |  |
| 29 | SERVICING THE COMMERCIAL      | 104 |  |
|    | LOW PRESSURE GUN TYPE         |     |  |
|    | BURNER                        |     |  |
| 30 | SERVICING VERTICAL ROTARY     | 108 |  |
|    | WALL FLAME BURNERS            |     |  |
| 31 | WATER LEVEL PROBLEMS          | 110 |  |
| 32 | BASIC OIL BURNER SERVICE      | 111 |  |
|    | METHODS                       |     |  |
| 33 | CONVERSION FACTORS            | 116 |  |
| 34 | LIST OF TABLES                | 119 |  |
| 35 | LIST OF PICTURES              | 119 |  |
| 36 | REFERENCES                    | 122 |  |
|    |                               |     |  |
|    |                               |     |  |
|    |                               |     |  |
|    |                               |     |  |

į

#### ACKNOWLEDGMENT

i

I would like to express my gratitude and appreciation to my project supervisor Mr. Panagiotis Tramountanellis for the valuable help and guidance in the preparation and completion of this project.

I would also like to express my sincere thanks to my wife Skevi and my colleague Kyriakos Pavlides for there help in finishing this project.

ł

#### ABSTRACT

The main objectives of this project is to conduct an investigation into the various types of domestic and commercial oil burners, to describe with reference to drawings and diagrams each type, to write down design constructional and operational characteristics, heat loss calculations burner and unit sizing and controls and finally to present service and maintenance features for efficient and economical operation.

I tried to active these by summarizing the book of Mr. Charles H. Burchardt with title domestic and commercial oil burners and add some other relevant information through the internet and other sources to active my coal.

#### INTRODUCTION

The fuel burned can be of three types solid liquid and gas. By the term fuel, we mean the substance burned during combustion the process where a substance unites with oxygen and produces heat and light. Oil burners are concerned with liquid fuels, but as so this fuel can not be burned. So in order to burn we have to break it in smaller particles or transform it into gas and vapor. The volatility of a liquid fuel is the ease at which a fuel transforms into vapor at ordinary temperatures.

So in order to have heating we have to have a device to prepare the liquid fuel for combustion by facilitating or hastening its change to a vapor that can be easily mixed with air and burned. This device is mostly concerned with the flash point and viscosity of a fuel. Flash point is the temperature which will momentarily support combustion of a fuel (e.g. No2 fuel oil 110 F). Viscosity is a measure of the resistance to flow. A high viscosity fuel is very thick and the flow is very slow, but viscosity is improved when we preheat the fuel.