HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DESIGN OF THE ELECTRICAL SERVICES OF A MULTISTOREY BUILDING

E.1364

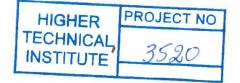
EVIS NICOLAIDES

JUNE 2004

HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT


DESIGN OF THE ELECTRICAL SERVICES OF A MULTISTOREY BUILDING

Project No: E.1364

Project reported by Evis Nicolaides

Project Supervisor: **Mr C. Chrysafiades** Type of project: Individual

JUNE 2004

ACKNOWLEDGEMENTS

Firstly I would like to thanks my project supervisor Mr. **C.Chrysafiades** for his very useful help, supervision and guidance during the whole process of this project.

I also want to thank my family for their support and their patience through out these three years and especially I would like to thank my father **Mr.Charalambos Nicolaides.**

Evis Nicolaides

6	n	TTT	TT	TR	TH	re
0	U.		11	21		rs

	PAGE
CHAPTER 1: PROTECTION AND EARTHING	1
1.Protection	2
1.1 Overcurrent protection	2
1.2 Protective devices	3-4
1.3 Protective conductors	5
1.4 Overload protection	6
1.5 Short circuit protection	6
1.6 Electric shock protection	7
1.7 Operation of RCD, MCB and Fuse	7
1.7.1 Operation of RCD	7
1.7.2 Operation of MCB	8
1.7.3 Operation of Fuse	9
1.8 Earthing systems	9-11
1.8.1 TT system	10
1.8.2 TN-S System	10
1.8.3 TN-C-S System	11
1.9 Earth Fauld Loop Impedance (EFLI)	12
1.10 Electrode terminations	13
CHAPTER 2: INSPECTION AND TESTING	14
2. Introduction	15
2.1 Visual Inspection	15
2.2 Testing sequence	15
2.3 Continuity of ring final circuits	16
2.4 Continuity of epc	16
2.5 Insulation resistance test	17
2.6 Polarity test	17

2.7 Earth electrode resistance test	18
2.8 Earth fauld loop impedance test	18
2.9 Figures	19-23
CHAPTER 3: ILLUMINATION DESIGN	24
3. Introduction	25
3.1 Definitions	25
3.1.1 Luminous flux	25
3.1.2 Illuminance	25
3.1.3 Maintenance Factor	25
3.1.4 Coefficient of utilization	25
3.1.5 Room Index	26
3.1.6 Luminaire	26
3.1.7 Mounting Height	26
3.1.8 Working plane	26
3.1.9 Light Loss Factor	26
3.1.10 Number of Luminaires	27
3.1.11 Ceiling Reflectance	27
3.1.12 Wall Reflectance	27
3.1.13 Glare	27
3.1.14 Average illuminance	28
3.2 Methods of calculation for illumination design	28
3.3 Typical calculation for illumination design	28-31

CHAPTER 4: Calculations of El. Installation Design of Flat	no: 1& Flat no: 2
of the three floors	32
4. Calculations of Flat No: 1	33
4.1.1 Lighting circuit 1	34-38
4.1.2 Lighting circuit 2	39-43
4.2 Socket Outlet design	44
4.2.1 Ring circuit 1	44-49
4.2.2 Ring circuit 2	50-55
4.3 Fixed Appliances	56
4.3.1 Cooker Unit	56-58
4.3.2 Washing Machine	59-60
4.3.3 Water Heater	61-62
4.3.4 Refrigerator	63-64
4.4 Calculation of Flat No: 2	65
4.5 Lighting Design	66
4.5.1 Lighting circuit 1	66-70
4.5.2 Lighting circuit 2	71-75
4.6 Socket Outlet Design	76
4.6.1 Ring circuit 1	76-81
4.6.2 Ring circuit 2	82-87
4.6.3 Ring circuit 3	88-93
4.7 Fixed Appliances	94
4.7.1 Cooker Unit	94-96
4.7.2 Washing Machine	96-97
4.7.3 Water Heater	98-99
4.7.4 Refrigerator	100-101
4.8 Tables of lighting circuits (results)	102
4.9 Tables of Socket Outlet circuits (results)	103
4.10 Table of fixed appliances (results)	104-105

4.11 Lighting design on Stairs	105
4.11.1 Lighting circuit 1	105-109
4.11.2 Lighting circuit results on stairs	109
CHAPTER 5: BONDING	110
5.1 General	111
5.2 Main Bonding Conductor	111
5.3 Supplementary Bonding conductor	112
CHAPTER 6: DIVERSITY FACTOR & MAXIMUM DEMAND	113-119
6.1 Selection of main MCB of Flat No: 1	120
6.2 Selection of main live conductors of Flat No: 1	120
6.3 Selection of Main MCB of Flat No: 2	121
6.4 Selection of Main live conductors of Flat No: 2	121
6.5 Selection of main cpc caple of the two Flats	122
CHAPTER 7: MAIN SINGLE LINE DIAGRAMS	123
7.1 Main Single line diagram of Flat No: 1	124
7.2 Information	124
7.3 Size of the Distribution Board of Flat No: 1	124
7.4 Main Single line diagram of Flat No: 2	125
7.5 Information	125
7.6 Size of the distribution Board of Flat No: 2	125
7.7 Calculation of Conduit size of the main circuits	126
7.8 Tables of the Main circuits (Results)	127

CHAPTER 8: STORAGE HEATERS DESIGN	128
8.1 Storage Heaters design of Flat No: 1	129-133
8.2 Storage Heaters design of Flat No: 2	134-141
8.3 Apportionment of the storage heaters (balancing between the pha	ses)
of Flat No: 1	142
8.4 Calculation of the Main supply caple & MCB	143
8.5 Selection of the main cpc	144
8.6 Calculation of the main equipotential bonding conductor	144
8.7 Calculation of the conduit size	144
8.8 Main Single Line Diagram of Flat No: 1	145
8.8.1 size of the Distribution board of Flat No: 1	145
8.9 Apportionment of the storage heaters (balancing between the pha	ses)
of Flat No: 2	146
8.10 Calculation of the Main supply cable & MCB	147
8.11 Selection of the main cpc	148
8.12 Calculation of the Main Equipotential Bonding conductor	148
8.13 Calculation of the conduit size	148
8.14 Main Single Line Diagram of Flat No: 2	149
8.14.1 Size of the Distribution board of Flat No: 2	149
8.15 Table of Storage Heaters (results) of Flat No: 1	150
8.16 Table of Storage Heaters (results) of Flat No: 2	151

CHAPTER 9: LIGHTNING PROTECTION SYSTEM	152
9.1 Theory-Definitions	153
9.2 Exposure risk	153-154
9.3 Overall risk	155-158
9.4 Determination whether a lightning protection system	
is needed	159-160
9.5 System Design-drawings	161
CHAPTER 10: COSTING	162
10.1 Introduction	163
10.2 Methods of Costing	163-164
10.3 Cost Analysis Table (estimating form)	165-166
CHAPTER 11: Appendices	167

1

.

HIGHER TECHNICAL INSTITUTE CYPRUS-NICOSIA

DIPLOMA PROJECT

Academic Year: 2003/2004 Project Number: E.1364 <u>Title: Design of the Electrical Services of a Multistorey building</u>

Objectives:

- 1. To design the complete electrical services of a multistorey building
 - (i) Power
 - (ii) Lighting
 - (iii) Design of storage heaters installation
 - (iv) Lightning protection system
- 2. To provide all necessary diagrams schedule of materials and costing including labour

Terms and Conditions

- 1. Supply voltage: (i) Single phase 240Vrms, 50Hz, T.T earthing system.
 - (ii) Three phase 415Vrms, 50Hz, T.T earthing system (for Storage Heaters).
- 2. Architectural drawings will be provided.
- 3. Regulations and calculation are complied with IEE 16^{th} edition and EAC regulations.
- 4. Wiring method: enclosed in a conduit (method 3).
- 5. The illumination design must be in accordance with the CIBS code.
- 6. All switches are mounted 1.5m above the floor and sockets (power) are mounted 0.5m above the floor. Distribution boards are mounted 1.7m above the floors.
- 7. External earth fault loop impedance is chosen to be $Z_e = 1\Omega$

Student: Evis Nicolaides (3EL2) Supervisor: Mr. C. Chrysafiades

INTRODUCTION – SUMMARY

The main objective of this project is to design the electrical installation, the storage heaters, and the lightning protection system.

This multistory building consists of three floors, the ground, first and second floor. Each floor consists of two flats (Flat No: 1 and Flat No: 2). Each Flat belongs to a different owner so it will be feed from a different meter. The stairs that is a communal load will be feed from a different meter.

The first Chapter of this project examines the theory of protection and earthing. This chapter is very important because protection is one of the main goals that must be fulfilled in order to avoid accidents and losses of life.

Chapter 2 examines the theory of inspection and testing. This is also a very important chapter because before feeding with power our installation, it must be first inspected and tested from us and then from EAC. If our installation does not fulfill the requirements for safety during the inspection of the EAC we must redesign the installation in order to have the permission to feed it with electricity.

Chapter 3 is based on the theory and calculations for illumination design. The illumination calculations are carried out to find the require number of fitting to be used.

The electrical design calculations are carried out at **Chapters 4 to 8.** The electrical installation in circuits ie. Lighting circuits, power circuits (socket outlets and fixed appliances). In the electrical design calculations we find the appropriate overcurrent protective device (type and rating), live and CPC conductors cross sectional areas and we take into consideration voltage drop limitations and thermal constrains for the CPC. Also these chapters contain diversity factors and maximum demand, main single line diagrams, storage heaters design and bonding. At **Chapter 9** we carried out the calculations for the lightning protection system, which is very essential in tall buildings with very high concentration of people.

Finally at Chapter 10 we carried out the costing of the Installation of the building.