HIGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING DEPARTMENT DIPLOMA PROJECT

DESIGN OF A SPACE HEATING AND SOLAR HOT WATER SUPPLY SYSTEM FOR A SUILDING

M/1027

ANASTASIOS ANGELIDES

JUNE 2007

DESIGN OF A SPACE HEATING AND SOLAR HOT WATER SUPPLY SYSTEM FOR A BUILDING

by

ANGELIDES ANASTASIOS

PROJECT REPORT

Submitted to:

the department of mechanical Engineering of the Higher Technical Institute.

Nicosia-Cyprus

In partial fulfillment of the requirements

For the diploma of

TECHNICIAN ENGINEER
IN
MECHANICAL ENGINEERING

June 2007

HIGHER TECHNICAL INSTITUTE	PROJECT NO	
	3721	

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation for help and guidance given to me throughout this project by my project supervisor Dr.Th. Symeou.

I would like also to thank the engineers in the companies, $H\lambda i\delta \varphi \omega \tau ov \& Zivi\epsilon \rho \eta \varsigma$ and Arenco.

Specially, I would like to thank my parents, for their support a dedicate my diploma project to them.

I would like also to thank my girlfriend for her help & suppo and I want to dedicate my diploma to her, and finally I would like to thank my best girlfriends who helped me.

> Anastasios Angeli June 2

CHART	ED 4	PAGE
CHAPT	ER 1	
1.1	INTRODUCTION	1
1.2	Heat Losses through structure	1
1.2.1	Structure of Fabric Losses	1
1.2.2	Infiltration Losses	2
1.3	Factors affecting the heat Requirements	3
1.4	Applies thermal properties of building materials	4
1.5	Overall coefficient of heat transmission	5
1.6	U-value calculations	7
1.6.2	U-value for brick external wall (200 mm)	9
1.6.3	U-value For floor	10
1.6.4	U-value For concrete roof	11
1.6.5	U-value for windows and doors	12
1.6.6	Table with the results of U-values	13
	Tables of Fabric Losses	15-50
	C/H System Basics	
CHAPT	ER 2	
2.1	INTRODUCTION	
2.2	Selection of the heating method	52
2.3	Natural convectors	53
2.4	Forced convectors	53
2.5	Floor Heating	54
2.5.1	How does Radiant Floor Heating work?	54
2.6	Radiators	55
2.7	Emitter selection – comparison between Radiator	
	& Floor Heating	55
2.8	Selection of the Method of Hot Water circulation	57
2.9	Selection of the type of circuit	58
2.10	Radiator Selection	61
2 10 1	Design water temperature	61

2.10.2	Conversion Factor	63
2.10.3	Procedure For the Selection of Radiators	64
2.10.4	Tables of the Selected Radiators	64
CHAPTE	ER 3	
	HOT & COLD WATER SERVICES	65
3.1	INTRODUCTION	66
3.2	Types of water Heating	66
3.3	Selection of the Hot water Supply System	66
3.4	Indirect hot water system combined with space Heating	69
3.5	Pipe arrangement considerations	69
3.6	Determination of the Hot water cylinders' capacity	70
3.7	Determination of boiler's power	71
CHAPTE	R 4	
	EQUIPMENT SIZING & SELECTION	72
4.1	INTRODUCTION	73
4.2	Boiler Sizing	73
4.2.1	Boiler Selection	74
4.3	Burner Sizing	76
4.3.1	Burner Selection	76
4.4	Expansion Vessel Sizing	76
4.4.1	Expansion vessel Selection	79
4.5	Chimney Sizing	79
4.6	Fuel oil tank Sizing	81
4.6.1	Fuel oil tank Selection	82
4.7.1	Pumps Positioning	84
4.7.2	Central Heating System Pumps Sizing	85
4.7.3	Pumps Sizing Procedure	86
4.7.4	Central Heating System Pumps Selection	88
4.7.5	Sizing & Selection of the hot & cold water supply Pumps	89
4.8	Radiators Selection	90

4.9	Hot water cylinder's coil Sizing	90
4.10	Cooper Tube Selection	93
4.11	Insulation Selection	93
4.12	Valves	93
CHAPT	TER 5	
COST ANALYSIS		96