HIGHER TECHNICAL INSTITUTE

TECHNICIAN ENGINEER DIPLOMA COURSE IN MECHANICAL ENGINEERING TECHNOLOGY

DIPLOMA PROJECT

"DESIGN OF A DOMESTIC SOLAR WATER HEATING SYSTEM FOR A RESIDENTIAL BUILDING"

BY

KARAYIANNIS IKAROS

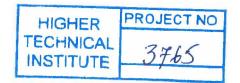
M/1042 JUNE 2008

DESIGN OF A DOMESTIC SOLAR WATER HEATING SYSTEM FOR A RESIDENTIAL BUILDING

By

IKAROS KARAYIANNIS

Project report submitted to the department of Mechanical Engineering of Higher Technical Institute


Nicosia Cyprus

In partial fulfillment of the requirements for diploma of

TECHNICIAN ENGINEER

In

MECHANICAL ENGINEERING June 2008

ACKNOWLEDGEMENT

I would like to express my sincere appreciation to my project supervisor, Dr. Theodoro Symeou for all the guidance, help and advices I was given by him.

I would like also to thank the engineers in companies, Metalco Heaters and Hydrotherm, for there helpful information on the parts of the solar water heating system I requested from them and for any knowledge they transferred me through our conversations.

4

Ikaros Karayiannis June 2008

CONTENTS

Page

CHAPTER 1 – SOLAR ENERGY	
1.1 Origin of Solar Energy	2
1.2 Solar Radiation at the earth's surface	3
1.3 Position of the sun in the sky	4
1.4 Solar chart	5
CHAPTER 2 - SOLAR WATER HEATING SYSTEM	8
2.1 SOLAR WATER HEATING SYSTEMS	8
2.1.1 System	8
2.1.2 Control methods in active solar water heating systems	11
2.2 HOT WATER DEMAND	16
2.3 COLLECTORS	18
2.3.1 Flat plate collectors	18
2.3.2 Flat plate collectors' efficiency	19
2.3.3 Collector placement	21
2.3.4 Collectors arrangement	23
2.4 STORAGE OF SOLAR ENERGY	28
2.5 AUXILIARY ENERGY UNIT	29
2.6 DESCRIPTION OF BASIC PARTS USED IN THE	
SYSTEM	32
2.6.1 Float switches	32
2.6.2 Float valves	34

2.6.3 Hot Water Storage Tanks		
2.6.4 Expansion vessel	38	
2.6.5 Booster pumps	39	
2.6.6 Water manifold	40	
2.6.7 Pressure regulator valve	40	
2.7 MAINTENANCE OF EQUIPMENT	42	
2.8 APROXIMATED COST OF BASIC EQUIPMENT	43	
CHAPTER 3 – ANALYSIS OF DATA	44	
(Using Ret Screen)		
3.1 CALCULATION OF COLLECTOR'S SLOPE	49	
3.2 EFFECT OF AZIMUTH ANGLE ON PERFORMANCE		
OF THE SYSTEM	51	
3.3 EFFECT OF USING A HEAT EXCHANGER	53	
3.4 HOW THE AREA OF THE COLLECTOR AFFECT		
THE SYSTEM	54	
3.5 HOW DESIRED TEMPERATURE AFFECTS THE		
SYSTEM	56	
3.6 HOW HOT WATER STORAGE TANK VOLUME		
AFFECTS THE SYSTEM	58	
3.7 GLAZED Vs UNGLAZED SOLAR COLLECTORS		
PANELS	60	
1		

CHAPTER 4 -	- DESIGN SYSTEM AND	
	CALCULATIONS	61

4.1 SOLAR COLLECTOR PANELS PLACEMENT 61

4.2 SOLAR COLLECTOR PANELS ARRANGMENT	
4.2.1 Solar collector panels installation on roof	65
4.3 SOLAR WATER HEATING SYSTEM DESIGN	66
4.3.1 All equipment used in the system	66
4.3.1.b. A summary of the operation of the whole	
system	68
4.3.2 Choosing the right control method for our hot	
water system	69
4.3.3 The decisions made for the system using data	
from the program and reference to other useful data	70

TERMINOLOGY OF SOLAR ENERGY	72
CONCLUSIONS	82
REFERENCES	83
APPENDICES	84

÷

INTRODUCTION

Hot water is an everyday luxury; hot water is needed for shower, kitchen sink and other water uses that come in touch with human's skin. The amount of hot water used is depending on the socio-economic conditions of a place. Producing hot water can be done in various ways using coal, electricity and other expensive ways, nowadays these ways have a big everyday increase in cost so another way should be used for this "luxury" which everyone needs. The answer comes in natural energy supplied from the sun free for all the people and in many countries in a big amount. Especially in Cyprus there are a lot of sunny days and this makes our country ideal for installing solar energy systems.

The production of sanitary hot water for domestic use or industrial applications by means of solar energy constitutes one of the most popular and economically feasible applications of flat-plate solar collectors. It is the most viable of all low temperature solar energy applications because the initial investment is small and the system is utilized throughout the year. This high use factor results in a larger load factor than any other application. As a rule of thump it can be suggested that solar water heating may be feasible anywhere, if the annual solar radiation is 1000 kWh/m² or more.

However, for the most efficient and cost effective utilization of solar energy in this field it is necessary to develop and design the appropriate system, select the suitable materials and equipment and size properly the components involved. This is what my project is about, thru research and using a program called RET Screen I will try to find the best way to place the collector (its slope and azimuth angles) the ideal number of solar collectors, the collectors arrangement, the capacity of the storage tank, the ideal temperature and what is better to use for supplying the extra energy needed but apart from the designing part of the project I will give a lot of information on solar hot water supply systems.

1