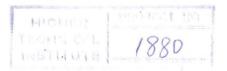
DESIGN OF A SOLAR HEATING SYSTEM FOR A RESIDENTIAL HOUSE


By:

KOUZIS PANTELIS

Project report submitted to the department of mechanical engineering of the HIGHER TECHNICAL INSTITUTE, Nicosia Cyprus in the partial fulfillment of the requirements for the diploma of:

TECHNICIAN ENGINEER in MECHANICAL ENGINEERING

June 1991

I would like to express my sincere thanks and appreciation for the help and guidance given to me throughout this project by my project supervisor Mr. I. Michaelides.

Kouzis Pantelis.

The objectives of this project were:

- 1. To calculate the heat requirements for the space heating of the building.
- 2. To design a suitable system for the collection and storage of low-temperature solar energy to satisfy the heat requirements of the building.
- 3. To determine the optimum size of the solar collector, storage unit, pumps, piping and other equipment and eccessories involved in the system, including all necessary instrumentation and controls.
- 4. To prepare detailed drawings showing clearly the system layout and components.
- To conduct a cost-estimate and compare it with that of a convectional heating system without solar.

CONTENTS

		Page:
Pre	face	I
1.0	SOLAR ENERGY	1
1.1	Introduction	1
1.2	Definition Of Terms	3
1.3	Solar Radiation Components	6
1.4	Solar Energy Characteristics	7
2.0	SOLAR HEATING SYSTEMS	8
2.1	Major Parts Of The Solar Heating System	9
2.2	Optimum Design Of The Solar Heating System	9
2.3	Factors Affecting The Performance Of Solar	
	Heating System	10
3.0	SOLAR ENERGY COLLECTION	13
3.1	Comparison Of The Hydronic And Air-Type Collector	18
3.2	Collector Placement	18
3.3	Collector Arrangement	19
3.4	Optimum Tilt Angle	21
4.0	SOLAR ENERGY STORAGE	22
. *	Rockbed storage	23
*	Water Storage	22

5.0 HEAT EMISSION AND EMITTER SELECTION	25
5.1 Floor heating (Underfloor)	27
5.2 Characteristics Of The Underfloor Heating System	28
5.3 Arrangement Of Heating Panels	30
5.4 Selection Of Panel Pipe	31
5.5 "FF-Therm" Pipes	34
6.0 HEAT LOAD ESTIMATE	36
6.1 Heat Requirements	36
6.2 Thermal Transmittance (U-Value)	39
6.3 Derivation Of The Overall Coefficient Of Heat	
Transmission	39
6.4 Calculation Of U-Value	42
6.4.1 U-Value Of The External Wall	43
6.4.2 U-Value Of The Ceiling	44
6.4.3 U-Value Of The Windows	45
6.4.4 U-Value Of The Floor	46
6.5 Calculation Of The Heat Load	47
6.5.1 Formula	48
6.5.2 Data	48
6.5.3 Building Dimensions	49
6.6 Pipe Spacing	62
6.7 Details On The Installation Of The Floor Heating	. 66
6 8 Balancing Of The System	67

7.0 INSTALLATION OF THE SOLAR HEATING SYSTEM	69
7.1 Introduction	.69
7.2 Basic Components Of The Heating Installation	.70
7.3 Heating System And Its Operation	.73
8.0 SELECTION AND SIZING OF EQUIPMENT	76
8.1 Collector	76
8.1.1 Selection Of Flat Plate Collector	.76
8.1.2 Efficiency Of The Collector	.76
8.1.3 Collector Positioning	.78
8.1.4 Selection Of The Proper Collector Arrangement	.80
8.1.5 Optimum Tilt Angle	. 81
8.1.6 Optimum Collector Area	.82
8.2 Boiler	93
8.2.1 Selection Of Boiler	. 93
8.2.2 Selection Of Burner	.93
8.2.3 Fault Finding	.96
8.3 Oil Tank	99
8.3.1 Sizing Of The Oil Tank	.99
8.4 Chimneys	100
8.4.1 Introduction	.100
8.4.2 Sizing Of The Chimney	.100
8.5 Pumps	101
8.5.1 Sizing Of The Pump In Storage-Distribution System	m101
8.5.1a Selection Of Pump	.106

8.5	.2 Sizing Of Pump In The Collection System	. 106
8.5	.2a Selection Of Pump	. 111
8.6	Sizing Of The Storage Tank	. 111
9.0	ECONOMICAL ANALYSIS OF THE SYSTEM	113
9.1	Introduction To The F-Chart Method	.113
	Conclusions	.118
	FINAL CONCLUSIONS	120
	APPENDICES	122