Design of a 'Water Resistance' testing machine for leather

by

Evangelos Evangelou

Project Report

Submitted to

the Department of Mechanical Engineering

of the Higher Technical Institute

Nicosia Cyprus

in partial fulfillment of the requirements

for the diploma of

TECHNICIAN ENGINEER

in

2.6 Des

.

MECHANICAL ENGINEERING

Project Supervisor: Mr. Costas Neocleous Lecturer in Mechanical and Marine Engineering (HTI)

June 1991

MIGHER TECHN CAL 1874 F

Acknowledgements

I wish to express my sincere thanks to my project supervisor Mr. Costas Neocleous for his guidance and assistance troughout my project. I also wish to thank Mrs. Athina Panagides, HTI graduate in electrical engineering (1984), for her valuable help, and all those who have helped me in any way.

Evangelos Evangelou

HTI

xna (Maraj see

SUMMARY

Design of a water 'Water Resistance' testing machine for leather, by Evangelos Evangelou

This testing apparatus employs a method for testing any boot or shoe upperleather. It is according to BS 3144:1968 and the method is based on SLP 22 and IUP/10 of the Society of Leather Chemists' Societies. Using this apparatus the following measurements can be made:

1. Duration of flexing which is just sufficient to cause water to penetrate through the sample from one face to the other.

2. The percentage gain of weight of the specimen due to water absorption during one or more specified intervals from the beginning of flexing and

3. The mass of water which is transmitted from one face to the other during one or more specified time intervals.

Once the need has been identified, several techniques are used in order to have the best solution. Design follows and iteration is employed, which is a dynamic procedure used in design, in order to make improvements.

Certainly this results in a design which requires no further refinement or changes so that it can operate with success.

Contents	Pages
Title page	I
Acknowledgements	II
Notation	III
Summary	IV
Introduction	V,VI
1.1 Need Identification	1
1.2 Creativity-Divergent Thinking	1
1.3 Decision making and Optimization	2
1.4.1 Questions asked	3
1.4.2 Answers to Questions	4
1.5 Aims and Objectives	5
1.6 Constraints and Trade Offs	5,6
1.7 Questionnaire	6,7
1.8 Solutions and Selection	8-12
2.1 Selection of motor and design of rear	13,14
motor support	
2.2 Design of cams, cam shaft, key, cam	14-17
casings, cover and rods	
2.3 Design of rockers, main shaft, bearing	17-19
casings, sockets and bearing selection	
2.4 Design of water reservoir, guides, oval	19,20
shaped parts, cylinders and clip selection	on
2.5 Selection of electric parts and wiring	20, 21
2.6 Design of table	21,22
Assembly Instructions	23,24
Operation and Safety	25
Mass and Cost estimate	26
Conclusion	27
References	28
Appendices	29-40
Drawings	

é