HIGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING DEFANTMENT

DIPLOMA PROJECT

DESIGN OF A CENTRAL HEATING SYSTEM FOR A BLOCK OF MILITARY BARRACS

M/850

PANAYIOTOU ANNA

JUNE 1999

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING DEPARTMENT

DESIGN OF A CENTRAL HEATING SYSTEM FOR A BLOCK OF MILITARY BARRACS

PANAYIOTOU ANNA M/850

JUNE 1999

DESIGN OF A CENTRAL HEATING SYSTEM FOR A BLOCK OF MILITARY BARRACKS

by

Panayiotou Anna

Project Report

Submitted to the Department of Mechanical Engineering of the Higher Technical Institute

Nicosia Cyprus

in partial fulfillment of the requirements for the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

June 1999

3016

This project is dedicated to my parents who have supported and encouraged me throughout this and many other efforts and have fostered in me the pursuit of knowledge and a determination to succeed

AKNOWLEDGMENTS

The completion of this project would have not been attained without the appreciable help of all the persons who contribute to it and whom I would like to thank.

First of all I would like to express my appreciation to my project supervisor Mr T. Symeou Lecturer at the Higher Technical Institute for his valuable help and guidance in completing this project.

I would also like to express my sincere thanks to Engineers of Eliofotou & Zinieris:

Mr Savvas Eliofotou Mr Kyriacos Zinieris Mr Louis Vacanas Mr Demetris Demetriou Mr Tassos Stassis

They very willingly allowed me to borrow from their rich and broad knowledge on the subject.

Finally, I wish to extend my thanks to: Mrs Yianna Constantinou Mrs Maria Apokidou S-Z Engineering: Mr Antonis Zannides, Mr Tasos Constantinou Ewald & Makis: Mr Yiannos Christoforou

CONTENTS

ACKNOWLEDGMENTS	
SUMMARY	
INTRODUCTION	
CHAPTER 1: ESTIMATION OF HEAT LOSSES	
1.1 INTRODUCTION	1
1.2 INFILTRATION OR VENTILATION LOSSES	2
1.3 STRUCTURE OR FABRIC LOSSES	2
1.4 THERMAL TRANSMITTANCE (U-VALUE)	4
1.5 CALCULATIONS OF U-VALUES	7
1.6 U-VALUE TABLES	9
1.7 HEAT GAINS AND COMPUTATION OF HEAT LOSSES	10
1.8 DESIGN CONDITIONS	12
1.8.1 OUTSIDE DESIGN CONDITIONS	12
1.8.2 INSIDE DESIGN CONDITIONS	13
1.9 ASSUMPTIONS MADE FOR THE CALCULATION OF HEAT LOSSES	13
1.10 SAMPLE CALCULATIONS OF THE HEAT LOSSES IN A MESS	14
1.11 TABLES OF HEAT LOSSES OF EACH ROOM	15
CHAPTER 2: SELECTION OF THE SYSTEM FOR THE SPACE HEATING	
2.1 INTRODUCTION	34
2.2 TYPES OF AIR-CONDITIONING SYSTEMS	34
2.3 TYPES OF CENTRAL HEATING SYSTEM	35
2.4 SELECTION OF THE HEATING METHOD	35
2.5 METHOD OF HOT WATER CIRCULATION	36
2.6 SELECTION OF THE TYPE OF CIRCUIT	37
2.6.1 One pipe circuit	37
2.6.2 Two pipe circuit	38
2.6.3 Two pipe normal circuit	38
2.6.4 Two pipe reversed return circuit	39
2.7 RADIATOR SELECTION	39
2.7.1 Design water temperature	40
2.7.2 Safety factor	41
2.7.3 Procedure for selection the radiators	44
	41
2.7.4 Tables of the selected radiators	41 41
2.7.4 Tables of the selected radiators 2.8 PIPE SIZING	
	41
2.8 PIPE SIZING	41 45

2.8.3 Pipe sizing tables	47
CHAPTER 3: EQUIPMENT SIZING AND SELECTION	
3.1 INTRODUCTION	52
3.2 BOILER SIZING	52
3.2.1 Boiler selection	53
3.3 BURNER SIZING	54
3.3.1 Oil burner selection	55
3.4 EXPANSION TANK SIZING	55
3.4.1 Expansion tank selection	57
3.5 CHIMNEY SIZING	58
3.6 FUEL OIL TANK SIZING	59
3.6.1 Fuel and oil tank selection	61
3.7. PUMP SIZING	61
3.7.1 Pump Selection	64
3.8 SELECTION OF WATER PIPE	65
3.9 INSULATION SELECTION	66
3.10 VALVES AND OTHER FITTINGS	67
3.11 ELECTRONIC PROGRAMMERS	68
3.12 RADIATORS SELECTION	69
CHAPTER 4: MAINTENANCE OF THE SYSTEM	
4.1 INTRODUCTION	70
4.2 GENERAL	70
4.3 BOILER	70
4.4 BURNER	71
4.4.1 Nozzles and electrodes	71
4.4.2 Filters	71
4.4.3 Fan runner	72
4.4.4 Motor	72
4.4.5 Controls	72
4.5 PUMPS	72
4.6 RADIATORS	73
4.7 VALVES	73
4.8 PIPEWORK AND FITTINGS	73
CHAPTER 5: COST ANALYSIS	74
CONCLUSIONS	
REFERENCES	
APPENDICES	
ARCHITECTURAL DRAWINGS	1

SUMMARY

The following report presents the work done for the Final Year Project bearing the title "Design of a Central Heating System for a Block of Military Barracks". All the work done for this project is covered in detail in this report.

The project is divided into five chapters. The first chapter is about the estimation of the heat loss requirements of the military barracks. The second chapter involves the system of the space heating, the type of circuit, radiator selection, pipe sizing, and the third chapter includes the sizing of the plant equipment and also other technical specifications selected from various manufacturer's catalogues. Furthermore the fourth chapter includes a preventive maintenance of the system and finally the last chapter provides the cost analysis for the system employed.

INTRODUCTION

One of the most important industries in Cyprus and throughout the world generally, is the control of indoor climate. The science and practice of creating a controlled climate, that is conditions that are conductive to human comfort is called air-condition. The term air-conditioning is sometimes misunderstood and confused. Often only cooling is implied when air conditioning is mentioned. A complete air-conditioning system must accomplish all the following: Heating, Humidification, Dehumidification, Cooling, Ventilation, Filtering and Circulation.

The heating system to be designed in this project should create thermal conditions at the internal space for all rooms except shower-rooms and w.c's.

The objectives of the project were:

- To calculate the heat requirements for space heating of a Block of Military Barracks.
- To design the system to be employed.
- 3) To carry out sizing of equipment and piping.
- 4) To select the appropriate machinery from various manufacturers catalogues.
- To prepare detailed drawings showing clearly the system layout and components.
- To prepare an estimated cost analysis for the installation of the system.

For the purpose of carrying out all the project work smoothly and without any delays, a schedule program was set and was followed throughout the whole execution of the project. This schedule program is included in Appendix 1.