Analysis Design & Implementation of a Windows based CASE Tool on Personal Computers

This project is submitted in partial fulfilment of the requirements for award the

DIPLOMA IN COMPUTER STUDIES of the HIGHER TECHNICAL INSTITUTE

CS/157

Project Supervisor : Mrs Eliza Angelidou-Loizou, BSc, MSc External Assessor :

DESIGNED BY Alexandros Savvakis

June 1995

SUMMARY

The purpose of this project is to create a CASE (Computer Aided Software Engineering) tool. The system to be developed will operate under the Windows^[1] environment. It will be a single user and the platform will be that of a standard PC.

Case tools have appeared a few years ago and are very useful to analysts and programmers. A lot of companies have tried to develop such tools but the cost and time required for this has resulted in creating tools with operations of limited scope. The approach to this CASE tool will certainly not deal with so much details as products in the market do. It will only provide some basic operations which facilitate the work of computer scientists and will be used more as a prototype.

The purpose of this CASE tool is support the Booch Object Oriented method. Specifically the system will provide the facility to it's users to create object, class, process and module diagrams. These diagrams as well as their functionality is discussed further in later chapters of this book. Another service under consideration is that of generating code from the diagrams. Specifically the object diagram will be used for creating the code that concerns the objects. The code to be generated will rather be a template and not actual code. The basic objects for creating windows applications will be automatically created as well as the definitions of the objects created by the user. The last part is the screen generator which seems to be a task that will not be satisfied because of the time limits.

Page: #2

CONTENTS

	Pag	j∈
<u>Acknowledgements</u>	1	
Summary) =
Introduction	3)
Chapter 1	5	
1.1 Introduction	. 5	,
1.2.1 Introduction to CASE	Tools 5	
1.2.1.1 Information about	CASE Tools 6	:
1.2.2 Information about The	e Object Oriented Approach 8	ž.
1.2.3 Object Oriented versu	us Structured Analysis 9	
1.3 Feasibility Considerations	1	1
1.3.1Cost Estimation	1	1
1.3.2Time Estimatiᢆผก	1	1
1.3.3 Hardware Requirem	ents 12	2
1.3.4 Software Requireme	ents 12	2
1.3.5 Borland Pascal vers	us Borland C++ 13	3
1.4 Conclusion	1.	A

Chapte	er 2	15
	2.1 Introduction	15
	2.2 Object Oriented Analysis	15
	2.2.1 Advantages of Object Orientated Analysis	17
	2.2.2 Disadvantages of Object Oriented Analysis	18
	2.3 Structured Analysis	19
	2.3.1 Advantages of Structured Analysis & Design	22
	2.3.2 Disadvantages of Structured Analysis & Design	22
	2.4 Why use Object Oriented Analysis	23
	2.5 Conclusion	23
Chapte	<u>r 3</u>	24
	3.1 Introduction	24
	3.2 The Object Model	24
	3.2.1 The Class Concept	25
	3.2.1.1 Class Structure	28
	3.2.1.2 Class Relationships	29
	3.2.2 The Object Concept	31
	3.2.2.1 Properties of Objects	33
	3.2.2.2 Relationships between Objects	34
	3.2.3 Abstraction	36
	3.2.4 Encapsulation	38
	3.2.5 Modularity	40
	3.2.6 Hierarchy	42
	3.2.7 Typing	44
	3.2.8 Concurrency	46
	3.2.9 Persistence	47

3.2.10 Object Model Advantages	49
3.3 Conclusion	50
Chapter 4	51
4.1 Introduction	51
4.2 The Notation	51
4.2.1 The Class Diagram	51
4.2.2 The Object Diagram	55
4.2.3 The Module Diagram	56
4.2.4 The Process Diagram	57
4.3 Conclusion	57
Chapter 5	59
5.1 Introduction	59
5.2 CASE Tools	59
5.2.1 Definition	60
5.2.2 Classification	62
5.2.2.1 Business System Planning Tools	62
5.2.2.2 Project Management Tools	62
5.2.2.3 Support Tools	63
5.2.2.4 Analysis &Design Tools	65
5.2.2.5 Programming Tools	66
5.2.2.6 Integration and Testing Tools	68
5.2.2.7 Prototyping Tools	69
5.2.2.8 Framework Tools	70
5.2.2.9 Artificial Intelligent CASE Tools	71
5.2.3 Parts of a CASE Tool	71

P

5.3	3 My CASE Tool	74
	5.3.1 Services	74
	5.3.1.1 Finding Classes and their responsibilities	74
	5.3.1.1.1 System's Description	75
	5.3.1.2 Diagrams Section	77
	5.3.1.2.1 The Object Diagram	78
	5.3.1.2.2 The Class Diagram	85
	5.3.1.2.3 Process - Module Diagrams	89
	5.3.1.3 Code Generator	90
Conclusion	<u>l</u>	91
<u>Appendices</u>		93
• •	Project Time Plan	93
Appendix B	Booch Notation	96
Appendix C	CASE Tool Class Diagram	99
Appendix D	CASE Tool Object Diagrams	100
Appendix E	CASE Tool Module Diagram	105
Appendix F	CASE Tool Context Diagram	106
Appendix G	CASE Tool Data Flow Diagrams	107
Appendix H	Data Dictionary	120
Appendix I	Data Stores, Data Structures, Process Descriptions	122
Appendix IA	MetaCase Brochures	158
References		171
<u>Bibliograph</u>	<u> </u>	<u>175</u>