

MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

IMPLEMENTATION OF QUALITY CONTROL PROCEDURES IN A SOFT DRINK INDUSTRY

M/890

BY: VASSILIOU ELISAVET

JUNE 2000

HIGHER TECHNICAL INSTITUTE PROJECT NO.

3178

IMPLEMENTATION OF QUALITY CONTOL IN A SOFT DRINKS INDUSTRY

By:

Vassiliou Elisavet

Project Report
Submitted to

The Department of Mechanical Engineering
Of the Higher Technical Institute

Nicosia Cyprus

In partial fulfillment of the requirements

For the diploma of

TECHNICIAN ENGINEER

In

MECHANICAL ENGINEERING

June 2000

ABSTRACT

The general objective of the project is the study and implementation of quality control techniques in a soft drinks industry.

The company chosen was Pepsi-Cola, which is an International company, and special emphasis is given to quality.

The methodology used was statistical, by sampling, since hundred percent inspection is not recommended in such cases. Analytically, samples were taken during production and charts were plotted. Analysis, discussion and suggestions were following each chart. After the analysis of the charts, the main outcome is that six of the nice charts were out of control.

In the author's opinion it would be very beneficial for the company if the variations were minimized and other methods of inspections were adopted. As an example, the fill height level can not be measured by the height gauge since there is a greater variation in the volume of the bottles. Moreover, the full implementation of the quality control techniques is suggested, and quality cost was analyzed.

It is generally accepted that Pepsi-Cola company puts quality first and with little improvement it will reach excellence.

This project is dedicated to the memory of my uncle Savvas Vassiliou, who will always hold a place in my heart, to my beloved parents Giorgos and Maria Vassiliou for their values and principles, and to my friends Kyriacos Stylianou and Aristos Stavrou for their love and support.

TABLE OF CONTENTS

	rages
ABSTRACT	
DEDICATION	
ACKNOWLEDGEMENTS	
CHAPTER 1	1
INTRODUCTION TO THE PROJECT	1
CHAPTER 2	3
INTRODUCTION TO QUALITY	3
2.1. MEANING OF QUALITY	3
2.2. HISTORICAL OVERVIEW	4
2.3. DEFINITIONS OF QUALITY	4
2.3.1. Meaning of control	5
2.3.2. What is quality control?	5
2.3.3. The object of quality control	6
2.4. QUALITY SYSTEMS	6
2.5. RESPONSIBILITY FOR QUALITY	6
2.6. DEFINITION OF QUALITY ASSURANCE	7
2.7. TOTAL QUALITY MANAGEMENT (TQM)	8
2.7.1. The TQM concept	8
2.8. TOOLS/TECHNIQUES FOR QUALITY	
IMPROVEMENT	9
2.8.1. Statistical Process Control (SPC)	9
CHAPTER 3	14
EXISTING STATUS OF THE COMPANY	14
3.1. HISTORICAL OVERVIEW OF THE COMPANY	14
3.2. FAMILIRIZATION WITH THE COMPANY	14
3.3. THE EXISTING QUALITY CONTROL STATUS	16
3.3.1. Water Treatment	19
3.3.2. Supporting technology for Reverse Osmosis	s Unit 25

		<u>Pages</u>
	3.3.3. Raw water standards	26
3.4.	SUGAR AND SWEETNERS	26
	3.4.1. Sugars and Primary inspections	26
	3.4.1. Sugar Treatment	28
3.5.	CARBON DIOXIDE	29
	3.5.1. Functions of CO ₂ in the beverage	29
	3.5.2. General specifications for carbon dioxide	29
3.6.	STORAGE OF PEPSI-COLA AND 7UP AND FLAVO	R
	CONCENTRATES	30
	3.6.1. Sanitary conditions	30
	3.6.2. Temperature	31
1	3.6.3. First in-First out	31
4	3.6.4. Stacking and sorting	31
	3.6.5. Inspection	31
	3.6.6. Sealing of containers	31
CHAPTER 4		32
4.1.	INTRODUCTION	32
4.2.	THEORY OF THE CHARTS USED DURING	
	IMPLEMENTATION	32
	4.2.1. Control charts for individuals values	
	(x control charts)	32
	4.2.2. np control charts	32
	4.2.3. p charts	32
	4.2.4. c charts	33

			<u>Pages</u>
		4.2.5. u charts	33
	4.3.	SYMBOLS USED ON CONTROL CHARTS AND	
	7.5.	CALCULATIONS	34
	4.4.	EQUATIONS USED FOR CALCULATIONS (IF n<7)	34
	nkoli	4.4.1. Equation for subgroup	34
		4.4.2. Equation of control limits for average	34
		4.4.3. Equation of control limits for range	35
		4.4.4. Equations for calculating control limits for P chart	35
CHAI	PTER:	5	36
	5.1. II	NTRODUCTION TO THE IMPLEMENTED CONTROL	
	Cl	HARTS	36
		5.1.1. Analysis of chart reference 01, referring to CO ₂	
		content of Pepsi Cola cans (330 ml)	36
		5.1.2. Analysis of chart reference 02 referring to the	
	÷ .	weight of cans	41
	17	5.1.3. Analysis of chart reference 03 referring to the	
		height of the beverage in the bottle	47
		5.1.4. Analysis of chart reference 04 which refers to	
		the sugar content of regular Pepsi-Cola bottle.	53
	•	5.1.5. Analysis of chart reference 05 referring to the	
		total defectives of calling canning line.	56
		5.1.6. Analysis of chart reference 06	65
		5.1.7. Analysis of chart reference 07 referring to the	
		low fill height defectives of bottling line.	74
		5.1.8. Analysis of chart reference 08 referring to the	
		total dissolved solids carbon filter 1.	79

		<u>Pages</u>
5.1.9. Analysis of chart refer	ence 09 referring to the to	tal
dissolved solids of carbon filter2.		81
CHAPTER 6		83
6.1. INTRODUCTION		83
6.2. THE COST OF QUALITY		83
6.3. COST ESTIMATION FOR THE SUGGESTIONS MADE		
CHAPTER 7		88
7.1. GENERAL INTRODUCTION		88
7.2. GENERAL SUGGESTIONS		88
7.3. AUTHOR BENEFITS		89
7.4. COMPANY'S BENEFITS		90
BIBLIOGRAPHY		91
REFERENCES		92
APPENDICES		

ACKNOWLEDGEMENTS

I would like to express my thanks to my project supervisor Mr. Damianos Roushas, Lecturer in Mechanical Engineering Department of Higher Technical Institute for his help and guitance.

I also acknowledge with thanks the constructive critisism and comments gladly given through the project by Dr. Ioanni Iona Angeli at the Mechanical Engineering Department of Higher Technical Institute. Last but not least, I would like to express my sincere appreciation to Pepsi-Cola company and its personnel for their support and helpful information. Special thanks to Mr. Lakis Charalambous, Director General of Pepsi-Cola Company, Mr. Christakis Christoforou, Quality Control Manager and Ms Elena Nicolaou, Chemical Engineer in Quality Control laboratory.

on the school

CHAPTER 1

INTRODUCTION TO THE PROJECT

The primary objectives of the project are:

- 1. to study the theory on quality control
- 2. to investigate the quality control procedures and methods in a manufacturing industry
- 3. to select specific products and suggest methods of improvement of the existing quality control practices
- 4. to carry out sampling measurements in order to test the effectiveness of the suggested techniques, by using various charts
- 5. to measure the process capability of the process by:
 - (i) Variable data
 - (ii) Attribute data
- 6. to carry out an economic comparison between the existing and proposed quality control procedures and techniques

PROJECT LAYOUT

In order to enable the reader to focus on the topic of his interest, the project has been divided into six chapters.

- Chapter 2: is an introduction to quality. In this chapter there is historical overview and concepts of quality are represented.
- Chapter 3: is an introduction to the Pepsi-Cola company and its existing status.
- Chapter 4: introduces the theory behind the control chart, the symbols used in calculations as well as the calculations.
- Chapter 5: represents the implementation of quality control in the industry. The charts plotted, analysis and discussion on them and suggestions for improvement are represented in this chapter.
- Chapter 6: represents a quality cost analysis and a rough cost estimation of implementing SPC was given.

Chapter 7: includes the overall conclusions of the project, the results of implementing SPC, and general suggestion that could be beneficial to the company.