HIGHER TECHNICAL INSTITUTE

TECHNICIAN ENGINEER DIPLOMA COURSE IN MECHANICAL ENGINEERING TECHNOLOGY

DIPLOMA PROJECT

"DESIGN OF A SMALL BIO DIESEL PRODUCTION UNIT"

BY

ARTEMI PARASKEVAS

M/1038 JUNE 2008

DESIGN OF A SMALL BIO DIESEL PRODUCTION UNIT

by

Paraskevas Artemi

Project report submitted to the Department of Mechanical Engineering

Of the Higher Technical Institute

Nicosia Cyprus

In partial fulfillment of the requirements for the diploma of

TECHNICIAN ENGINEER

in

ŝ,

MECHANICAL ENGINEERING

JUNE 2008

ABSTRACT

Design of a Small Bio Diesel Production Unit. (June 2008) Paraskevas Artemi Supervisor: Dr. Lazaros Lazari

This project investigates the issue of bio fuels and, more specifically, the existing bio diesel production. At first, it explains what we mean by saying bio fuel and goes back in the past to show how people have come up with bio diesel production. Then, it talks about bio fuels' use in the European Union and, it further points out the advantages and disadvantages of using bio diesel and looks at it from the perspective of economics. In addition, the project refers to different methods through which bio diesel can be produced and different feed stocks that can be used for it.

At last, the most important part of the project is when it comes to propose a possible design of a small bio diesel production unit that produces bio diesel from used cooking oil from restaurants. In this part, there will be also reference to equipment used, safety measures, the cost of designing such a unit and suggestions for improvement.

Ļ

LIST OF CONTENTS

Pages

		-
ABS	ГВАСТ	i
CON	TENTS	ii
ACK	NOWLEDGMENTS	iv
<u>CHA</u>	PTER 1 - INTRODUCTION	1
1 1	DIA EURI O IN THE 21-4 CENTRIDY	1
1.1	AIMS AND OBJECTIVES OF THE PROJECT	1
CHA	PTER 2 – BIO FUELS	2
2.1	INTRODUCTION	2
2.2	WHAT IS BIO FUEL?	2
2.3	FIRST-GENERATION BIO FUELS	3
2.4	CONCLUSION	5
<u>CHA</u>	PTER 3 - BIO FUEL'S HISTORY	6
3.1	INTRODUCTION	6
3.2	BIO FUEL'S HISTORY	6
3.3	CONCLUSION	7
CHA	PTER 4 – BIO FUELS AND EUROPEAN UNION	8
4.1	INTRODUCTION	8
4.2	THE USE OF BIO FUELS IN THE EUROPEAN UNION	8
4.3	EUROPEAN UNION LEGISLATION	9
4.4	MEMBER STATE IMPEMENTATION - TAX INCENTIVES	10
4.5	ENERGY IN EUROPEAN UNION	11
4.6	AGRICULTURE	11
4.7	TRADE	13
4.8	EXCESS CAPACITY	13
4.9	MOVING TOWARDS 2020	15
4.10	CONCLUSION	17
CHA	PTER 5 – ADVANTAGES AND DISADVANTAGES OF USING BIO	10
DIES		18
5.1	INTRODUCTION	18
5.2	ADVANTAGES	18
5.3	DISADVANTAGES	20

5.5	DISADVANTAGES	20
5.4	CONCLUSION	21

<u>CHA</u>	PTER 6 - THE ECONOMICS OF BIO DIESEL PRODUCTION	22
6.1	INTRODUCTION	22
6.2	PRODUCTION EFFICIENCY	22
6.3	COST STRUCTURE	22
6.4	GOVERNMENT SUBSIDIES	23
6.5	CONCLUSION	23
<u>CHA</u>	PTER 7 – PRODUCING BIO DIESEL	24
7.1	INTRODUCTION	24
7.2	BASIC METHODS FOR PRODUCING BIO DIESEL	24
7.3	THE PROSPECTS FOR TECHNOLOGICAL IMPROVEMENTS IN	
	BIO DIESEL PRODUCTION	27
7.4	SURVEY ON EXISTING BIO FUEL PRODUCTION UNITS	28
7.5	CONCLUSION	36
<u>CH</u>	APTER 8 – BIO DIESEL FEEDSTOCKS	37
8.1	INTRODUCTION	37
8.2	BIO DIESEL FEEDSTOCKS	37
8.3	CONCLUSION	41
СНА	PTER 9 – DESIGN OF A SMALL BIO DIESEL PRODUCTION UNIT	42
9.1	INTRODUCTION	42
9.2	AUTOMATION PROCESS OF PRODUCING BIO DIESEL	42
9.3	SAFETY	50
<u>CHA</u>	APTER 10 - CONCLUSION	52
<u>REF</u>	ERENCES	54

ŀ

ACKNOWLEDGEMENTS

This work would never have been possible if it was not for some people's considerable aid.

First of all, thanks and gratitude go to Dr. Lazaros Lazari, my supervisor. I deeply thank him for his valuable feedback and suggestions, as well as Melanie Satraki ♥ for her contribution in researching on bio fuels and bio diesel.

Also, a great deal of thanks goes to George Artemi for his inspiration and ideas about the automation system, and Y.S. Koromias Company deserves much appreciation for their help with the drawing of the system.

ŀ

CHAPTER 1

INTRODUCTION

1.1 BIO FUELS IN THE 21st CENTURY

Bio fuel production is an ancient endeavor to solve economic and environmental problems associated with fossil fuels. Except from being environmentally friendly, bio fuel is a renewable source of energy and can be made even from waste vegetable oil. It also reduces health risks and helps engines last longer.

But although their production increases over years, they still account for only 5% of the global transportation fuel market. The major reason for this is the cost. Even though bio fuels solve problems that petroleum diesel causes, they are thought to lead to social troubles like the increase of food prices.

At this moment, bio diesel is used by millions of car owners in Europe, especially in Germany. But its future is uncertain since it depends on the price of oils, government policies and technological development.

1.2 AIMS AND OBJECTIVES OF THE PROJECT

My project's main objective is to design a small production unit that will be able to produce bio diesel from used cooking oil coming from restaurants.

This objective will be accomplished through some essential steps. First, I will carry out a survey on existing bio fuel production units, listing their characteristics with regard to their productivity, cost of operation per litter of fuel produced and the cost of construction or purchase such a unit. I will also research on methods of production and different feed stocks used for producing bio diesel. Then, I will attempt to design the bio fuel production unit which will be capable of producing 100 to 150 liters of diesel per day, using waste cooking oil.

1