HTI

MECHANICAL ENGINEERING COLIRSE

DIPLOMA PROJECT

DESIGN OF AN AIR CONDITIONING SYSTEM FOR A BUILDING

M/985

KALOGIROU ANTONIS

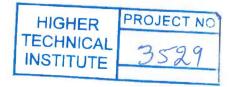
2004

VOLUME 1

HTI

MECHANICAL ENGINEERING COURSE

DIPLOMA PROJECT


DESIGN OF AN AIR CONDITIONING SYSTEM FOR A BUILDING

M/985

KALOGIROU ANTONIS

2004

VOLUME 1

DESIGN OF AN AIR CONDITIONING SYSTEM FOR A BUILDING

by

Antonis Kalogirou

Project report submitted

to the Department of Mechanical Engineering

of the Higher Technical Institute

Nicosia Cyprus

in partial fulfillment of the requirements for the diploma of

TECHNICAL ENGINEER

in

MECHANICAL ENGINEERING

June 2004

VOLUME 1

HGHER	PROJECT NO
ECHNICAL NSTITUTE	3529

ACKNOWLEDGEMENTS

The completion of this project would have not been attained without the appreciable help of all the persons who contributed to it and whom like to thank.

First of all I would like to express my sincere thanks and appreciation for the help and guidance give to me throughout this project by my supervisor Mr. Th. Symeou.

My special thanks to Mr. Trifonas Christoforou for the advice and the information he offered me, also for his help in using the HEVACOMP program

Finally I would like to thank my friends Annie and Paris for their help to the final presentation of this project.

This project is dedicated to my perents

.

CONTENT

SECTION	PAGES
Acknowledgements	3
Summary	8
Introduction	9
PART A	
CHAPTER 1: DESIGN CONDITIONS	12
1.1 Introduction	13
1.2 Selection of Design Conditions	15
CHAPTER 2: ESTIMATION AND CALCULATION OF U-VALUES	18
2.1 Introduction	19
2.1.1 Thermal Resistance of Material R	19
2.1.2 Thermal Conductivity K	20
2.1.3 Surface Resistance R _s	21
2.1.4 Airspace Resistance	21
2.2 Calculations of U-value	22
2.2.1 External Walls	22
2.2.2 Partition	24
2.2.3 Roof	26
2.2.4 Floors	28
2.2.5 Glazing	30
CHAPTER 3: AIR CONTIONING LOADS	31
3.1 Introduction	32
3.2 Cooling Loads	32
3.2.1 Cooling Load Estimations	32
3.2.2 Cooling Load Calculations	33

	3.2.3 Heat Transmit ion Calculations	34
	3.2.4 Solar Heat Gain Though Glass	34
	3.2.5 Room Loads	35
	3.2.6 Heat Gain From Outside Air	35
3.3	Heating Loads	36
	3.3.1 Heating Load Estimations	36
	3.3.2 Transition Losses	36
	3.3.3 Infiltrations Losses	37
3.4	Load Calculations	38
	3.4.1 Introduction	38
	3.4.2 External Wall Information	38
	3.4.3 Internal Wall Information	39
	3.4.4 Internal Ceiling Information	39
	3.4.5 Internal Floor Information	39
	3.4.6 Window Information	40
	3.4.7 External Roof Information	40
	3.4.8 Misallenious Information	40
3.5	Results From The HEVACOMP Program	41

PART B

CHAPTER 4: CLASIFICATIONS OF AIR-CONDITIONING SYSTEMS	54
4.1 Introduction	55
4.2 All-Air Central System	56
4.2.1 The All-Air Central System Advantage are	56
4.2.2 The All-Air Central System Disadvantage are	57
4.3 All-Air Central Reheat System	58
4.4 All-Air Central Dual Duct System	59
4.4.1 The System Advantage Include	59
4.4.2 The System Disadvantage Include	60
4.5 All-Air Central Multizone System	61
4.5.1 The Multizone Advantage are	62
4.5.2 The Multizone Disadvantage are	62

4.6 All-Air Rooftop System	62
4.6.1 The System Advantage Include	63
4.6.2 The System Disadvantage Include	64
4.7 Air-Water Central System	64
4.7.1 The Air-Water Central System Advantage Include	66
4.7.2 The Air-Water Central System Disadvantage Include	66
4.8 All Water Central Systems	68
4.8.1 The All Water System Advantage Include	69
4.8.2 The All Water System Disadvantage Include	69
4.9 Two Pipe Systems	71
4.10 Three Pipe Systems	71
4.11 Four Pipe Systems	72
4.11.1 The Four Pipe System Advantage are	73
CHAPTER 5: SYSTEM SELECTION	75
5.1 Introduction	76
5.2 Fan Coil Unit System	77
CHAPTER 6: SIZINING AND SELECTION OF EQUIPMENT	78
6.1 Boiler	79
6.1.1 Selection of Boiler	79
6.2 Burner	80
6.2.1 Selection of Burner	80
6.3 Chiller	81
6.3.1 Selection of Chiller	81
6.4 Piping System	82
6.4.1 Pipe Sizing Calculations	83
6.4.2 Pipes Insulation	86
6.5 Pumps	87
6.5.1 Selection of Pumps	88
6.6 Fan Coil Unit Selection	89
6.7 Expansion Tank	95

6.7.1 Heating Expansion Tank Selection	95
6.7.2 Cooling Expansion Tank Selection	96
6.8 Buffer Tank	96
6.8.1 Buffer Tank Selection	96
6.9 Controls	97

PART C

CHAPTER 7: MAINTENANCE	99
7.1 Introduction	100
7.2 Boiler	100
7.3 Burner	101
7.4 Chiller	101
7.5 Pumps	101
7.6 Fan Coil Units	102
CHAPTER 8: COST ANALYSIS	103
CONCLUSIONS	105
REFERENCES	108

APPENDICES:	
APPENDIX 1: (Tables)	
APPENDIX 2: (Boiler and Burner)	
APPENDIX 3: (Chiller)	
APPENDIX 4: (Fan Coil Unit)	
APPENDIX 5: (Pipes, Fittings and insulation)	
APPENDIX 6: (Buffer Tanks and Expansion)	

SUMMARY

The aim of this project is to design an air conditioning system for a building. The building is a block of office in Nicosia.

Architectural drawings of the building were provided. Design conditions were supplied while, ambient condition were base collected from the Meteorological Services.

Energy conservation and noise level were considered as major factor in the design of the system. The thermal load of the building for heating and cooling were calculated using the HEVACOMP program.

The project is divided into three parts. Part A deals with the calculation of the cooling and heating loads. Part B deals with the selection of the system and the selection of the equipment. Finally The Part C, which deals with the maintenance of the system and the cost analysis.

Finally, a complete set of mechanical drawings is being provided in which the location of all air conditioning equipment are illustrated.

8

INTRODUCTION

Although Air Conditioning in the past was considered to be a luxury item, nowadays is thought to be necessity. In fact many modern processes products would not have been existed or preserved without precise control of environmental conditions.

Therefore many homes, offices and industrial structures are now being designed with a means of controlling the indoor environment throughout the year. These means are called Air Conditioning.

Historically Air Conditioning has implied cooling or otherwise improving the indoor environment during the warm months of the year.

Nowadays, Air Conditioning refers to year round automatic control of temperature, moisture content, cleanliness, air quality and air circulation as required by occupants, a process or product in a space.

There are several different ways of classifying air conditioning systems, which are:

- 1. Classification as to major function
 - Comfort Air-Conditioning system
 - Industrial Air-Conditioning system

9

- 2. Classification as to season of the year
 - Winter Air-Conditioning system
 - Summer Air-Conditioning system
 - Year round Air-Conditioning system
- 3. Classification as to equipment arrangement
 - Central station system
 - Unitary or "Packaged" system
 - Combination systems

The shortage of energy and escalating energy costs on one Hand, and the noise pollution on the other, have caused re-examination of initial comfort conditions and placed more emphasis on the proper design and simulation of thermal environmental system.

The above considerations have led to the estimation of energy variables as accurately as possible, so that the design of the Air Conditioning system to be employed would have the lowest possible energy consumption

10