HIGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

- 10

DIPLOMA PROJECT

DESIGN AND CONSTRUCTION OF A TEST RIG FOR THE INVESTIGATION OF CAVITATION IN PUMPS (M/760)

> By YIANNAKIS CONSTANTINIDES NICOLAOU CHRISTOS

> > JUNE 1996

DESIGN AND CONSTRUCTION OF A TEST RIG FOR THE INVESTIGATION OF CAVITATION IN PUMPS

by

Yiannakis Constantinides Nicolaou Christos

Project Report Submitted to the Department of Mechanical Engineering of the Higher Technical Institute Nicosia Cyprus in partial fulfillment of the requirements for the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

June 1996

PROJECT HIGHER TECHNICAL NSTITUTE 2601

This project is dedicated to the memory of our supervisor Mr. Marios Pattichis.

.

CONTENTS

ACKNOWLEDGEMENTS		i
SUMMARY		ii
INTRODUCTION		1
CHAPTER 1: Pump theory		
1.1 Classification of pumps		2
1.2 Reciprocating pumps		4
1.3 Rotary pumps		5
1.4 Rotodynamic pumps		7
1.5 Performance characteristics		10
CHAPTER 2: Cavitation in pumps		
2.1 Cavitation phenomenon		13
2.2 Origin off cavitation phenomenon		15
2.3 Dynamics of transient cavities	,	17
2.4 Effects of cavitation		19
2.5 Factors affecting cavitation damage		25
2.6 Parameters related to cavitation		27
2.7 Cavitation and geometric similarity		33
2.8 Cavitation in centrifugal pumps		35
2.9 Cavitation in axial flow pumps		41
2.10 Cavitation in mixed flow pumps		44
2.11 Cavitation in gear pumps		44
2.12 Cavitation in vane pumps		45
2.13 Cavitation in piston type pumps		45
CHAPTER 3: Testing methods for cavitation		
3.1 Cavitation tests in general		46
3.2 Cavitation test arrangements		48
3.3 Methods of determining the NPSH required by the pump		52
3.4 Cavitation onset determination		54
CHAPTER 4: Selection and design of a cavitation testing rig.		
4.1 Test selection		57
4.2 Basic design considerations		59
4.3 Concept of the rig layout		60
4.4 Testing rig components		62
4.5 Calculations		79
4.6 Construction details		84

CHAPTER 5: Testing the rig	
5.1 Test procedure layout	86
5.2 Calculations	91
5.3 Results and graphs	94
5.4 Discussion - Concussive remarks	99
CONCLUSIONS	102

APPENDIX A: Testing rig drawings

APPENDIX B: Photographs

APPENDIX C: Tables, charts and component specification

APPENDIX D: References

APPENDIX E: I.S.O. standards

ACKNOWLEDGEMENTS

We would like to express our sincere thanks and appreciation for guidance given by our project supervisors Mr. Constantinos Neocleous, and Mr. Marios Pattichis for the fulfillment of this project.

We also acknowledge with special thanks the help, guidance, and support given to us by Mr. Stavros Nicolaou who offered us his workshop and Mr. Dinos Constantinides who sponsored the pump used in the tests.

Finally thanks are also to all those who helped to bring this project to an end.

SUMMARY

Cavitation is the most devastating and destructive phenomenon in pump operation, limiting the field of safe application. As the objectives of this project is to study the phenomenon of cavitation in pumps and design a cavitation testing rig the following steps where followed throughout the entire work:

- Description of the different types of pumps, principles of operation, and performance characteristics.
- Definition of the phenomenon of cavitation in pumps and the parameters related to.
- Study and analysis of the various methods of testing for cavitation including the measurements required and the appropriate instrumentation, always according to ISO standards class B.
- Selection of a particular testing arrangement and detail design of the rig.
- Construction of the testing rig.
- As the best verification for any theory is the experimental establishment, the final step was to perform tests on the rig to determine the conditions, parameters under which it occurs and its effects escorted by a closer study and investigation on the origin and mechanism of the phenomenon of cavitation based on the experimental results.

Constantinides Yiannakis Nicolaou Christos

"Design and Construction of a Test Rig for the Investigation of Cavitation in Pumps."

INTRODUCTION

The oldest invention for the conversion of useful work (mechanical energy) into natural energy (liquid energy) recorded since the earliest years of the human existence go to one machine, the pump.

Pumps show up from the earliest years of civilization and are variously known, depending up on which culture recorded their description, as Persian wheels, water wheels, norias, Archimedean screw e.t.c. Perhaps the most interesting is that since the ancient years technology has met a vast development but still pumps remain one of the most used machines. Its function, to move any liquid from one place to an other against differences in elevations and against any resistance to flow made it popular over the centuries. Now days pumps are highly efficient, reliable and flexible as there is one for any application and for any liquid, from highly volatile ether to thick sludge.

Although the astonishing improvement of this hydraulic machine, still is another human creation, being label with the mark of imperfection, consequently having a number of restricting factors, phenomenons that reduce its field of application. The most devastating and undesirable phenomenon that might occur during incorrect operation of a pump is cavitation, because of its destructive effects both in performance and lifetime of the machine.

So it's wise to prevent and avoid cavitation, ensuring an efficient installation. This can be done by knowing the factors affecting and under what conditions occurs by testing the pump on a cavitation testing rig.