DESIGN OF A POWER TRANSMISSION DEVICE FOR A COMPRESSOR

by:

Michalakis Savva

Project Report
Submitted to
the Department of Mechanical Engineering
of the Higher Technical Institute
Nicosia - Cyprus

in partial fulfillment of the requirements for the diploma of TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

JUNE, 1990

ABSTRACT

The aim of this project is to design a power transmission device for a compressor, with proper selection of materials and components required, all necessary drawings and a cost estimation.

The project is divided into seven chapters each one being fully explained in the foregoing contents.

Chapter 1 deals with the selection of the type of drive suitable for this project.

Chapter 2 deals with the design of the selected drive.

Chapter 3 deals with the design of the compressor shaft.

Chapter 4 deals with the design of keys and keyways involved in this project.

Chapter 5 deals with the design of the supporting system for the prime mover.

Chapter 6 deals with the design of a tensioning system for the belts involved.

Chapter 7 gives a precise estimation of the costs involved in the construction of the device.

CONTENTS

		P	ages
ABSTRACT	r		. vi
CHAPTER	1 : INTRODUCTION TO POWER TRANSMISSION		
1.1	Introduction to power transmission devices		1
1.1.1	Belt drives		1
1.1.2	Chain drives		2
1.1.3	Gear drives		3
1.2	Selection of drive		3
1.3	Types of belt drives		4
1.3.1	Flat belts		4
1.3.2	V-belts		5
1.3.3	Link V-belts		6
1.3.4	Timing belts		6
1.4	Selection of belt type		7
CHAPTER	2 : SELECTION OF V BELT DRIVE		
2.1	Selection of the driving motor		8
2.2	Selection of the V-belt drive		8
2.2.1	Service factor		9
2.2.2	Design power		9
2.2.3	Belt section		9
2.2.4	Speed ratio		9
2.2.5	Motor pulley limitation		10
2.2.6	Pulley pitch diameters		10
2.2.7	Centre distance	•	10
2.2.8	Basic power per belt		11
2.2.9	Speed ratio increment		12
2.2.10	Belt length correction factor		12
2.2.11	Arc of contact correction factor		13
2.2.12	Corrected power per belt		13
2.2.13	Number of belts required		13
2.3	Drive specification		13

CHAPTER	3 : DESIGN OF THE COMPRESSOR SHAFT	
3.1	Design of the compressor shaft	15
3.2	Conditions for validity of the analysis to	
	be followed	15
3.3	Determination of ratio of tensions for	
	a V-belt	15
3.4	Calculation of tensioning forces for a	
	single belt	17
3.5	Calculation of forces acting on the	
	compressor shaft	19
3.6	Shaft length	20
3.7	Torsional moment on the compressor shaft	21
3.8	Bending moment on the compressor shaft	21
3.9	Selection of shaft material	22
3.10	Factor of safety	22
3.11	Determination of shaft diameter	22
3.11.1	Design using maximum shear stress theorem	24
3.11.2	Design using ASME code	24
3.11.3	Design using Soderberg Approach	26
3.12	Selection of shaft diameter	27
CHAPTER	4 : DESIGN OF KEYS AND KEYWAYS	
4.1	Keys and Keyways	28
4.2	Selection of material for keys	28
4.3	Design of compressor key	29
4.3.1	Check for shear failure of key	30
4.3.2	Check for failure due to crashing	31
4.3.3	Selection of key length	32
4.4	Motor key and keyway	32
CHAPTER	5 : MOTOR SUPPORTING	
5.1	Motor supporting	33
5.2	Selection of M-section beams	34
5.3	Selection of motor bolts	34
5.4	Design of beam bolts	36

		Pages		
5.4.1	Forces acting on beam bolts	37		
5.4.2	Selection of beam bolts material	38		
5.4.3	Shear force and bending moment diagrams	38		
5.4.4	Check of beam bolts for shear failure	39		
5.4.5	Check of beam bolts for bearing failure	39		
5.4.6	Check of beam bolts for bending failure	39		
5.4.7	Length of beam bolts and selection of nut	40		
CHAPTER	6 : TENSIONING SYSTEM			
6.1	Tensioning system	41		
6.2	Design of power screw	42		
6.2.1	Compression load on power screw	42		
6.2.2	Check of power screw for compression failure.	43		
6.3	Nut design	44		
6.3.1	Check of screw threads for shear failure	44		
6.3.2	Check of nut threads for shear failure	44		
6.3.3	Check of threads for bearing failure	45		
6.3.4	Nut selection	45		
6.4	Design of bolts securing the nuts	46		
6.4.1	Check of bolts for shear failure	47		
6.4.2	Check of bolts for bearing failure	47		
6.4.3	Nut Selection	48		
CHAPTER	7 : COST ANALYSIS			
7.1	Cost analysis	49		
CONCLUS	ions	50		
REFERENCES				
APPENDIX				

(iv)

DRAWINGS