HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DC TO DC CONVERTERS

EXPERIMENTS AND ANALYSIS

E 1315

JOSEPH NEOPHYTOS

JUNE 2003

The department of Electrical Engineering of the Higher Technical Institute

DC TO DC CONVERTERS

Experiments and Analysis

CREATED BY
JOSEPH NEOPHYTOS

In partial satisfaction of the award of diploma of

TECHNICIAN ENGINEER IN ELECTRICAL ENGINEERING

Project Supervisor: Dr. Christos Marouchos

June 2003

HIGHER TECHNICAL MODEL 3396

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

INTRODUCTION

CHAPTER 1- POWER ELECTRONICS	1- 10
1.1 DEFINITION	1
1.2 MAIN TASK OF POWER ELECTRONICS	1
1.3 RECTIFICATION	3
1.4 DC TO AC CONVERSION	4
1.5 DC TO DC CONVERSION	5
1.6 AC TO AC CONVERSION	6
1.7 ADDITIONAL INSIGHTS INTO POWER	
ELECTRONICS	7
CHAPTER 2- THEORETICAL OPERATIONS OF A DC	
TO DC CONVERTER	11- 24
2.1 STEP- DOWN (BUCK) CONVERTER	11
2.2 STEP- UP (BOOST) CONVERTER	13
2.3 STEP- DOWN/ STEP- UP (BUCK- BOOST)	
CONVERTER	18
2.4 THE CUK DC TO DC CONVERTER	22

CHAPTER 4- EXPERIN	MENTS	45- 74
4.1 INTRODUCTION		45
EXPERINMENT 1-	THE MOSFET BUCK	
	CHOPPER	46
EXPERINMENT 2-	THE MOSFET BOOST	
	CHOPPER	53
EXPERINMENT 3-	THE MOSFET BUCK BOOST	
	CHOPPER	65
REFERENCES		,
APPENDICES		
APPENDIX 1		
APPENDIX 2		

CHAPTER 3- DESIGN OF A DC TO DC CONVERTER	25- 44
3.1 DIODE REVERSE RECOVERY CURRENT	25
3.2 STEP- DOWN CONVERTER PRODUCTS FOR LOW	
VOLTAGE, DIGITAL SYSTEMS	29
3.3 APPLICATIONS	31
3.3.1 LM26xx	31
3.3.2 LM2788/98	32
3.4 THE INSULATED GATE BIPOLAP TRANSISTOR (IGBT)	33
3.4.1 STRUCTURE	33
3.4.2 OPERATION	34
3.4.2.1 BLOCKING OPERATION	34
3.4.2.2 ON- STATE OPERATION	35
3.5 IGBT	38
3.5.1 DESCRIPTION	38
3.5.2 ASSUMPTIONS AND LIMITATIONS	40
3.5.3 EXAMPLE	42
3.6 PULSE WIDTH MODULATION	43
3.6.1 SYSTEM	43
3.6.2 RESULTS	44

ACKNOWLEDGEMENTS:

I would like to express my thanks to my project supervisor Mr. Christos Marouchos for his valuable quitance to carry out this design.

All the staff of the Higher Technical Institute for their help.

My family for all of their support during the year of my studies and especially now with the project.

INTRODUCTION:

The dc-dc converters are widely used in regulated switch-mode dc power supplies and in dc motor drive applications.

Looking ahead to the application of these converters, we find that these

Converters are very often used with an electrical isolation transformer in

The switch-mode dc power supplies and almost always without an isolation
transformer in case of dc motor drives. Therefore, to discuss these circuits
in a generic manner, only the non-isolated converters are considered in this
chapter, since the electrical isolation is an added modification.

The following dc-converters are discussed:

- 1. Step-down (buck) converter
- 2. Step-up (boost) converter
- 3. Step-down/step-up (buck-boost) converter
- 4. Cuk converter
- 5. Full-bridge converter

Of these five converters, only the step-down and the step-up are the basic converter topologies. Both the buck - boost and the Cuk converters are combinations of the two basic topologies. The full-bridge converter is derived from the step-down converter.

INTRODUCTION:

The dc-dc converters are widely used in regulated switch-mode dc power supplies and in dc motor drive applications.

Looking ahead to the application of these converters, we find that these

Converters are very often used with an electrical isolation transformer in

The switch-mode dc power supplies and almost always without an isolation
transformer in case of dc motor drives. Therefore, to discuss these circuits
in a generic manner, only the non-isolated converters are considered in this
chapter, since the electrical isolation is an added modification.

The following dc-converters are discussed:

- 1. Step-down (buck) converter
- 2. Step-up (boost) converter
- 3. Step-down/step-up (buck-boost) converter
- 4. Cuk converter
- 5. Full-bridge converter

Of these five converters, only the step-down and the step-up are the basic converter topologies. Both the buck - boost and the Cuk converters are combinations of the two basic topologies. The full-bridge converter is derived from the step-down converter.