HIGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING COURSE

. DIPLOMA PROJECT

DESIGN AND MANUFACTURING OF AN IMPACT RESISTANT KINETIC PROJECTILE

> > M/784 JUNE 1997

DESIGN AND MANUFACTURING OF AN IMPACT RESISTANT

KINETIC PROJECTILE

M / 784

by

Stylianou George

Project Report

Submitted to

the Department of Mechanical Engineering

of the Hihger Techical Institute

Nicosia Cyprus

in partial fulfillment of the requirements

for the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

June 1997

1 1	1.11.12	PROJECT NO
	Sec.	9400
	UTE	2100

CONTENTS

Contents				
Acknowledgements				
Abstract				
Introduction				
	PAGE			
CHAPTER 1 : OBJECTS OF THE INVENTION .	1			
CHAPTER 2 : THE INVENTION . 	2 11 12			
CHAPTER 3 : DESIRED SHAPE . 	13 16			
CHAPTER 4 : INDUCTION FURNACES (B2R) FOR DIE CASTING.	17			
- Constractive Characteristics	17			
- Technical Data	19			
- Materials and Spare - Parts	20			

CHAPTER 5 : SPRAY - DRYING (CERAMIC POWDER).	21
- Figures	23
- Terminology	25
- Slurry Preparation	26
(1) Powder dispertion	27
Figures	28
Figures	32
Figures	36
(2) Binder Addition	37
- Slurry Characterization	42
(1) Density and Foam content	43
(2) Percent Solids	45
(3) Viscosity	46
Figures	47
- Atomization	48
(1) Rotary Atomization	49
(2) Pressure Atomization	51
(3) Pneumatic Atomization	53
Figures	55
- Droplet - Air Mixing	56
(1) Cocurrent	57
(2) Countercurrent	58

	(3) Mixed Flow	59
	(4) Wall Deposits	60
	Figures	62
	- Droplet Drying	63
	Figures	64
	(1) Hollow Granules	66
	(2) Binder Migration	69
	Figures	70
	- Powder Characterization	74
CHAPTER 6 :	EXPERIMENTAL PROCEDURE .	78

-	Tubular	Furnace	78

- Figures 79

, e . "

, , t[#]

Conclusion

References

ACKNOWLEDGEMENTS

I would like to express my thanks and appreciation for the help and quidance given to me throughout this project to my supervisor Dr Nicos Angastiniotis, Lecturer at the Higher Technical Institute.

Also thanks to NEMITSAS INDUSTRIES for their essential help throughout this project.

. e^{, r}

Stylia	anou	Georgios
3rd	year	student
in	M	echanical
Engine	ering	H.T.I.

ABSTRACT

The purpose of this project was to design and manufactur an impact resistant kinetic projectile.

This invention relates to sintered parts of tungsten alloys, specifically kinetic energy projectiles, (or bullets) and processes for their fabrication.

The tungsten is the only metal which has high density and resistance. Also is available at a reasonable price.

An investigation of the literature on various techiques for the production of impact resistant components and the limities parameters on improvement of impact related properties is also provided .

1

14