HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DEVELOPMENT OF A STRUCTURE CABLING DEMONSTRATION UNIT

EL/ 1062

CHRISTODOULOU C. THEMIS

JUNE 1997

DEVELOPMENT OF A STRUCTURE CABLING DEMONSTRATION UNIT

This project is submitted in partial fulfillment of the requirements for award of the

DIPLOMA IN ELECTRICAL ENGINEERING of the HIGHER TECHNICAL INSTITUTE

EL/1062

Project Supervisor : Mr. Theopemptou Charalambos Lecturer of H.T.I

Designed by: CHRISTODOULOU C. THEMIS

JUNE 1997

Table of Contents

Acknowledgment

Introduc	tion		2
Chapter	1.	Evolution of Structured Cabling	3
	1.1	Standards for Structured Cabling System	5
Chapter	2.	Transmission Media	7
	2.1	Comparison of Transmission Media	9
		2.1.1 Twisted-Pair	9
		2.1.2 Base-band Coaxial Cable	10
		2.1.3 Broadband Coaxial Cable	11
		2.1.4 Fiber Optic Cable	12
Chapter	3.	Cabling Options and Trends	
	3.1	Fiber Optic Cabling	13
	3.2	Design Considerations	15
	3.3	Cable Protection and Safety	17
	3.4	Comparison of Trends	18
		3.4.1 Coaxial Cable	18
		3.4.2 Twisted Pair	18
		3.4.3 Fiber Optical	19
	3.5	Topology	21

Chapter	4.	Structure Cabling System Technical Description		
	4.1	Introduction	22	
	4.2	Systems Requirements	23	
	4.3	Passive Part	24	

Chapter 5. Technical Description

5	.1 Horizontal Wiring	25
	5.1.1 Recommendations	27
	5.1.2 Installation Recommendation	28
	5.1.3 Topology and Distance	29
	5.1.4 Conformance and Handover	30
	5.1.5 Components Characteristic	32
	5.1.5.1 Twisted Pair Cable	32
	5.1.5.2 Access Point	35
	5.1.5.3 Patch Panels /Patching Blocks	35
	5.1.5.4 Jumper cables	36
	5.1.5.5 Drop Cables	36
	5.2.1 Backbone Wiring	37
	5.2.2 Conformance and Handover	39
	5.2.2.1 Single Operator Method	40
	5.2.3 Components Characteristics	43
	5.2.3.1 Fiber Optic Cable	43
	5.2.3.2 Fiber Optic Patch Cords	44
	5.3.1 Locations and Quantities	46

Chapter	6.	Development	of a	a Structure	Cabling	System
---------	----	-------------	------	-------------	---------	--------

6.1 Description and Planning	47
6.2 Procedure	48

APPENDIX

- 1. Cables
- 2. Cords
- 3. Panels
- 4. Outlets
- 5. Connectors
- 6. Spicing
- 7. Adapters
- 8. Protectors
- 9. Testing
- 10. Tools
- 11. Miscellaneous
- 12. Wavelan
- 13. Systilan

ACKNOWLEDGMENT

I would like to express my gratitude to Mr. Theopemptou C. Lecturer in Higher Technical Institute for his guidance and motivation, and also his willigness to offer me every possible help for the preparation and evolution of this project.

Also I would like to express my gratitude to Mr. Hadjispyrou for his valuable help and all the people that have expressed their suggestions and ideas.

Finally I would like to thank my family for their support and patience.

INTRODUCTION

As today's communication networks become more complex, as more users share peripheral and as the need for faster access to information increases- a good foundation for these becomes increasingly important. The first step toward the adaptability, flexibility and longevity required of today's networks begins with structure cabling – the foundation of any information system.

It is vital that communication cabling be able to support a variety of applications and last for the life of a network. If that cabling is part of a well-designed structured cabling system, it can allow for easy administration of moves, adds and changes and smooth migration to a new network topologies. On the other hand, "worry-aboutwhen-you-need-to" systems will make moves, adds and changes a hassle and make new network topologies too difficult to implement. Networks problems occur more often, and are more difficult and time-consuming to troubleshoot. When communication systems fail, employees and assets sit idle causing a loss of revenues and profits.

The purpose of this project is to present the advantages of using a standard-based structured cabling system for a business enterprise. The project will cover a brief historical perspective of structured cabling, a review of the standards, transmission media, cabling options and also a construction of such a system.(see chapter 6)