COMPUTER AIDED DESIGN

OF A POWER TRANSMITTING SHAFT

By

Constantinos Charalambous

Projected Report

submitted to

the Department of Mechanical Engineering

of the Higher Technical Institute

Nicosia/Cyprus

In partial fulfillment of the requirements

for the diploma of

TECHNICIAN ENGINEER

IN

MECHANICAL ENGINEERING

June 1993

2189

ACKNOWLEDGMENT

I would like to thank my supervisor Mr. P.Demetriou, as well as Mr. C.Neocleous and everybody else who gave me their help and support.

SUMMARY

This project deals, with the development of a program, fully compatible with AutoCAD, to aid designing of a power transmitting shaft of various capacities.

The most commonly used, theories of shaft design are presented. The project also expands, at the field of customization of AutoCAD. Some various techniques aiming at increasing the efficiency of an AutoCAD system are presented.

This project also introduces the reader into AutoLISP, an interface programming language enclosed in the AutoCAD package.

Flowcharts are developed, to show the function of the program, while a complete user's manual is enclosed.

Finally the software is tested and as a conclusion some recommendations are stated.

CONTENTS

CHAPTER 1:DESIGN OF SHAFTS

1.1. Introduction	1
1.1.1. Rotary motion	1
1.1.2. Shaft classification	1
1.1.3. Shaft materials	2
1.2 Determination of shaft geometry	3
1.3. Static loading	3
1.4. Static loading-bending and torsion	6
1.4.1. Factor of safety	6
1.5. Fatigue	7
1.5.1. Introduction	7
1.5.2. Variable loading	8
1.5.3. Fatique analysis	10
1.5.3.1. The Westinghouse code formula	11
CHAPTER 2:INTRODUCTION TO CAD	
2.1. Introduction	18
2.2. AutoCAD an implementation of CAD	19
2.2.1. AutoCAD customization	20
2.2.1.1. Creating keyboard macros	20
2.2.1.2. Changing AutoCAD menus	23

CHAPTER 3:INTRODUCTION TO AUTOLISP

3.1. Introduction	31
3.1.1. Advantages of LISP compared to other programming languages	31
3.2. The AutoLISP interpreter	32
3.3. Installing AutoLISP	34
3.3.1. Software and Hardware requirements	34
3.3.2. Configuring AutoLISP	34
3.3.3. Adjusting the memory available for AutoLISP	35
3.4. How to create and load AutoLISP files	36
3.5. File ACAD.LSP	37
CHAPTER 4:USER'S MANUAL	
4.1. Installation of software	38
4.2 The main menu	39
4.2.1. The info status	40
4.3. Designing shaft	41
4.3.1. Design according to static loading formula	41
4.3.2. Design according to the Westinghouse code formula	42
4.4. Display of specifications	43
4.5. Drawing of shaft	43
4.5.1. Two dimensional drawing	44
4.5.2. Three dimensional drawing	44
4.6. Loading a shaft file	<i></i> 45

4.7. Saving a shaft file	45
4.8. Discard of information	46
4.9. End of program	46
4.10. Error handling	47
CHAPTER 5:FLOWCHARTS	
5.1. Introduction	49
5.2. Flowchart symbols	50
5.2.1. Flowchart explaining main menu	52
5.2.2. Flowchart explaining design	53
5.2.3. Flowchart explaining display	54
5.2.4. Flowchart explaining draw	55
5.2.5. Flowchart explaining load	56
5.2.6. Flowchart explaining save	57
5.2.7. Flowchart explaining discard	58
CHAPTER 6:TESTING OF SOFTWARE	
6.1. Test of designing according to the static loading formula	59
CHAPTER 7:CONCLUSIONS	62
APPENDIX A:LISTING OF PROGRAM	64.
APPENDIX B:MATERIAL PROPERTIES	74
APPENDIX C:CHARTS OF THEORETICAL STRESS	
CONCENTRATION FACTORS	78
APPENDIX D:	81