Higher Technical Institute MECHANICAL EMERING DEPARTMENT

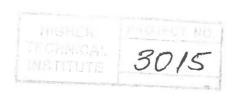
DIPLOMA PROJECT

MEASUREMENT AND CONTROL OF COMBUSTION AIR IN BOILER SYSTEMS

BY:
NEOPHYTOU MARINOS
M/849

JUNE 1999

HIGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING DEPARTMENT


DIPLOMA PROJECT

Measurement and Control of Combustion Air in Boiler Systems

(M/849)

by NEOPHYTOU MARINOS

JUNE 1999

MEASUREMENT AND CONTROL OF COMBUSTION AIR IN BOILER SYSTEMS

By NEOPHYTOU MARINOS

Project Report

submitted to

the Department of Mechanical Engineering

of Higher TECHNICAL INSTITUTE

Nicosia - Cyprus

In partial fulfillment of the requirements for

the Diploma

of

TECHNICIAN ENGINEER

IN

MECHANICAL ENGINEERING

JUNE 1999

HIGHER TECHNICAL 1NSTITUTE PROJECT NO. 1

CONTENTS

	PAGE
SUBJECT	
INTRODUCTION	1
ACKNOWLEDGEMENTS	2
CHAPTER 1 - BOILERS	
1.1 The Basic Steaming Process	3
1.2The Function of Boilers	8
1.2.4 Boiler Auxiliaries	14
1.2.5 Boiler Losses	16
CHAPTER 2 - COMBUSTION	
2.1 Combustion - Basic Principles	24
2.2 Factor affecting good combustion	24
2.3 Fuels used in boilers	24
2.4The Lambola Factor (λ)	30
2.5Analysis of Products	30
2.6Analysis of Products	33
2.7 Orsat Apparatus	33
2.8 Combustion Quality	36
2.9 Smoke and Soot	38
2.10 Vibrations and Pulsations	39
2.11 Boilers efficiency	39
CHAPTER 3 - BOILER DRAFT SYSTEM	
3.1 Draft losses in Boilers	42
3.2 Natural Draft and Forced Draft	13

3.3 Pressure - Fined Boilers	44
3.4 Balanced Draft Boilers	45
3.5 Dampers and Damper Control Devices	46
3.6 Draft or Air Flow Control using a variable - speed fan	47
3.7 Minimum Air flow	48
CHAPTER 4 - MANAGEMENT AND CONTROL	
OF FURNACE DRAFT AND COMBUSTION	
OF AIR FLOW	
4.1 Measurement of Furnace Draft	50
4.2Furnace Draft Using simple Feedback Control	52
4.3 Furnace Draft Control using Feedforward - plus - Feedback Control	53
4.4 Furnace Draft control using push-pull feedforward - plus - feedback control	ol54
4.5 Protection against implosion	55
4.6 Measurement and Control of Combustion Air flow plus related functions	57
4.7 Differential pressure measurements of Air flow	58
4.8 Other differential pressure primary element devices	61
4.9 Piezometer ring and "piccolo" tube	61
4.10 Non - Inferefencial methods of Air flow measurement	63
4.11 Control of Air flow	65
4.12 Flue gas dew point control	66
4.13 Soot blowing	68
REFERENCES	69
APPENDIX	70
CONCLUSION	72

.

INTRODUCTION

Today boilers are widely used in industry for the production of steam for numerous purposes.

Boilers are simply one kind of heat exchanges that burn oil to produce the work needed to transform water into steam. In fact it is the most costly component of a central heating although is very simple in construction. It is just like two empty barrels one inside the other with water filling the space between them. The water is heated by burning a fuel, usually oil, in the inner barrel.

The combustion of oil i.e. the oil being mixed with air and ignited leads to air pollution and reduced efficiencies if for many reasons the boiler does not work smoothly.

To have smooth operation of the boiler, in one hand all its parts have to work properly and on the other hand the quality of oil has to be good to lead to good combustion with the best air fuel ratio.

In order to improve combustion and minimize emissions companies have develop a wide range of catalyst which are added to the fuel being burned in the boiler.

These additives have the function of improving the efficiency of boilers and reducing emissions at the same time, without taking any part in the reaction.

Having in mind that this project is not a kind of text book it has been avoided overwriting of excess theories, and great effort has been laid in the control of combustion air in boiler systems and on the additives which help the boilers efficiency.

By Neophytou Marinos

ACKNOWLEDGEMENTS

I would like to express my gratitude to Dr. Panayiotis Tramountanellis who recommended this project giving me the opportunity to get involved with the subject matter of the Boilers efficiency and control measurements.

I would also like to express my gratitude to Mr P. Demetriou, Lecturer in Mechanical Engineering for being the best Lecturer in Mechanical Engineering.

Neophytou Marinos

3rd year student in

Mechanical Engineering