H.T.I.

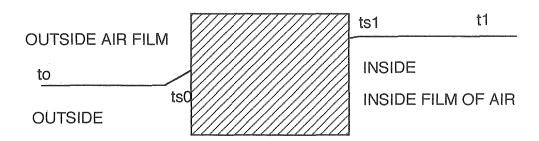
MECHANICAL ENGINEERING COURSE DIPLOMA PROJECT

DESIGN OF AN AIR CONDITIONING SYSTEM FOR A BUILDING

M/727

AGAPIOU NICOLAS

1995


1. ESTIMATION AND CALCULATION OF "U"-VALUES

1.1 ESTIMATION OF "U"-VALUE"

Thermal transmittance or "u-value" is the quantity of heat which will flow through unit area of a given structure from the air one side to the air on the other side, for a unit difference between the environmental temperatures on either side of the structure in unit time and it's calculated in $\underline{w/m^2}k$

It depends up the material used their thickness and thermal conductivity, the degree of exposure and the inside thermal resistance. The figure bellow allestrates the temp gradvet through a wall in winter, hence the coefficient of conduction which concerned are:

- (1) the coefficient of conduction his, the film of the air at the inside surface.
- (2) the coefficient of conductance cw, through the actual wall which results to temperature drop tsi-tso.
- (3) the coefficient of conduction hso, through the film of the air at outside wall.

CONTENTS

ACKNOWLEDGMENTS

SUMMARY

INTRODUCTION

PART A

CHAPTER 1 ESTIMATION AND CALCULATION OF "U" VALUES

	<u>Page</u>
1.1 Estimation of U-value	4
1.2 Calculation of U-values	5
1.4 U-value summary	15a
CHAPTER 2 DESIGN CONDITIONS	
2.1 Introduction	18
2.2 Selection of design conditions	18
CHAPTER 3 COOLING AND LOAD CALCULATION	ONS
3.1 Introduction	21
3.2 Cooling and Dehumidification	
load calculation	21
3.3 Heat Gains	23

	<u>Page</u>	
3.4 Heading Loads Calculation	24	,
3.5 Heading Load Due to Ventilation and		
Infiltration	25	
3.6 Load Calculations	27	
3.7 Data for the Complex Space		
Input Form	27	
3.8 Zone Input Sheet		
	30	
PART B		
CHAPTER 4 SYSTEM SELECTION		
4.1 Air Conditioning Systems	35	
4.2 Classification of Air Conditioning		
System	35	
4.3 System Selection	37	
CHAPTER 5 PIPING SYSTEM DESIGN		
5.1 Piping System Design	40	
5.2 Piping System Information	40	
5.3 Pipe Sizing	41	
5.4 Pipe Sizing Calculation	41	
CHAPTER 6 AIR DUCT SYSTEM DESIGN		
6.1 Introduction	46	
6.2 Velocity Method	46	
6.3 Equal - Friction Method	46	

	Page
6.4 Static Regain Method	47
6.5 Supply Duct System (First Floor)	47
6.6 Supply Duct System (Third Floor)	50
CHAPTER 7 SELECTION OF THE APPRO	PRIATE MACHINERY
EQUIPMENT	
7.1 Air to Water Heat Dump	55
7.2 Air Handling Units	56
7.3 Fans for A.H.U.	58
7.4 Supply and Return Air Outlets	62
7.5 Split Unit Selection	63
7.6 Pump Selection	63
7.7 Insulation	65
7.8 Anti-Vibration Mountings	66
PART C	
CHAPTER 8 MAINTENANCE	
8.1 Introduction	71
8.2 Air to Water Heat Pump	71
8.3 Pump	72
8.4 Fans and A.H.U.	72
8.5 Pipes	72
8.6 Filters	73
8.7 Ducts	73
8.8 Diffusers	73

	<u>Page</u>
8.9 Split Unit Systems	73
CHAPTER 9 COST ANALYSIS	75
CONCLUSIONS	77
REFERENCES	77
APPENDICES	77