HIGHER TECHNICAL INSTITUTE ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

CONSTRUCTION OF A GREEK SPEECH SYNTHESIS SYSTEM FOR HANDICAPPED CHILDREN (E/960)

by

LOIZIDES GEORGE

JUNE 1995

HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING COURSE DIPLOMA PROJECT

CONSTRUCTION OF A GREEK SPEECH SYNTHESIS SYSTEM FOR HANDICAPPED CHILDREN

E-960

LOIZIDES GEORGE

JUNE 1995

CONSTRUCTION OF A GREEK SPEECH SYNTHESIS SYSTEM

Project report submitted by

LOIZIDES A. GEORGE

to the Department of Electrical Engineering of the Higher Technical Institute Nicosia, Cyprus In partial fulfillment of the requirements for the Diploma of

TECHNICIAN ENGINEER IN ELECTRICAL ENGINEERING

June 1995

Στη μνήμη του αγαπητού μου φίλου Νικόλα Κυριακίδη τον οποίο ο Θεός τόσο νωρίς πήρε κοντά Του.

In the memory of my friend Nikolas Kyriakides who in his early twenties gave his life while trying to help others

CONTENTS

		Page
ACKNOWLEDGEMENTS		1
ABSTRACT		2
INTRODUCTION		3
CHAP	TER 1: The system	
1.1	Techniques for storing and playing back voice	5
1.2	Speech storing	5
1.3	Speech Encoding Method	5
1.4	Access to the stored data	6
СНАР	TER 2: Digital encoding of speech	
2.1	Theory of pulse code modulation	8
2.1.1	General	8
2.2	Pulse Code Modulation Process	9
2.3	Sampling theorem	10
2.4	Quantization noise	11
СНАР	TER 3: Operation of the system	
3.1	Block diagram of the system	13
3.2	Operation in general	14
CHAPTER 4: Hardware design and operation		
4.1	Logic Family	16
4.2	Control Circuit	17

4.2.1	Control Circuit Functions	17
4.2.2	Control Circuit Element	17
4.2.3	Control Circuit Logic Diagram	20
4.3	The Digital to Analog Converter	23
4.3.1	General	23
4.3.2	D/A Converter using binary weighted resistors	24
4.3.3	D/A Converter using R-2R resistive ladder network	25
4.3.4	The AD7524 DAC as used in the system	27
4.4	The low pass filter	30
4.4.1	General	30
4.4.2	Active filters	31
4.4.3	Active low pass filters	31
4.4.4	The low pass filter as used in the system	34
4.4.5	The practical frequency response of the filter	34
4.5	The Audio Amplifier	38
4.6	The Counter	40
4.6.1	General	40
4.6.2	The 74HC191 Counter	40
4.6.3	The system counter	42
4.7	The oscillator	45
4.7.1	General	45
4.7.2	The system oscillator	45

4.8	The memory	47		
4.9	The power supply	48		
4.9.1	General	48		
4.9.2	The 7805 regulator	48		
4.9.3	The 7661 voltage converter	48		
4.10	The switch off alarm	50		
4.10.1	General	50		
4.10.2	The 4538 monostable	50		
4.10.3	The tone generator	53		
4.10.4	The switch off alarm output	53		
CHAPTER 5: Hardware construction				
- -	Osmanal	50		

REFERENCES		58
5.3	The main board	56
5.2	The memory card	56
5.1	General	56

REFERENCES

APPENDICES

- Appendix 1: Calculations
- Appendix 2: List of Components
- Appendix 3: PCB's layouts
- Appendix 4: Data sheets
- Appendix 5: Project diskette
- Appendix 6: Voice recording and contents of EPROM's

ACKNOWLEDGEMENTS

I would like to thank my colleagues Louka Petros, George Paphitis and Theoharis Kyriakou for the help they gave me allowing use of their computer software and hardware. Also thanks to the company Panos Englezos Manufactrurers for the use of their library.

I would like to express my sincere appreciation to my project supervisor Mr Theopemptou Charalambos for his help.

Finally I am grateful to my wife's bridesmaid Alexia Chrysochou and her fiance Andreas for preparing the typing work of this book.

ABSTRACT

Greek Speech Synthesis System for handicapped children by George Loizides.

The aim of this project is the development of a low cost technique for storing and playing back voice signals from a ROM. These signals which are small phrases or words which combined together can produce a whole message can be choosen by a keyboard.

The ability to give a complete message with the use of hands only was the first thought for this system in order to be used by handicapped children who can use their hands only for communicating easily with their environment.

This system is designed for a maximum capability of 16 independent messages either words or small phrases each of maximum duration of 1.5 seconds.

The voice is stored in memory and recalled each time a phrase is needed accordingly.

The cost of the system is not high and the main contribution to this belongs to the number of words required.

INTRODUCTION

The system already described since it can play back 16 voice signals has the need to store them somewhere. In conjunction with the principle of operation which is Pulse Code Modulation the storing media are EPROMs. The Codes of Pulse Code Modulation signals are stored in EPROMs. Each EPROM stores the codes for one word only of duration not greater than 1.5 seconds.

By depressing a key the EPROM which corresponds to it is enabled via a circuit which makes everything about the control of the system.

The digital form of the signal is converted with the aid of a Digital to Analog Converter back to analog. Then is low pass filtered, amplified and driven to a speaker.