

MECHANICAL ENGINEERING COURSE

DIPLOMA PROJECT

DESIGN OF A CENTRAL HEATING AND HOT WATER SUPPLY SYSTEM FOR A SCHOOL

M/679

ZACHARIAS PAPAZACHARIOU

JUNE 1994

a new life and have	1 6-001 61 60
$\{ g_{\mu}^{(1)} \mid P^{(n)} \in \{ \{ i \in J \} \}_{i=1}^{n + 1} \}$	and the state of t
Contraction of the	07/11
1	2341
NOTE	

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING COURSE

DIPLOMA PROJECT

DESIGN OF A CENTRAL HEATING AND HOT WATER SUPPLY SYSTEM FOR A SCHOOL

M/679

ZACHARIAS PAPAZACHARIOU

JUNE 1994

村(1)14(1)13	PROJECT NO
TECHNICHL	2 2 1 1
ALC THEOTH	2341

DESIGN OF A CENTRAL HEATING AND HOT WATER SUPPLY FOR A SCHOOL

by

ZACHARIAS PAPAZACHARIOU

PROJECT REPORT

SUBMITTED TO

THE DEPARTMENT OF MECHANICAL ENGINEERING OF THE HIGHER TECHNICAL INSTITUTE

NICOSIA CYPRUS

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DIPLOMA OF TECHNICIAN ENGINEER

IN

MECHANICAL ENGINEERING

June 1994

NI CAR DA	PROJECT (2)
TECHNICKL	2,341
INSTITUTE	2041

This project is dedicated to my parents who have offered me so much

CONTENTS

PAGES

ACKNOWLEDGEMENT

SUMMARY

INTRODUCTION

CHAPTER	1: Heat	Losses	1
1.1	Introduct	ion	1
1.2	Heat loss	through structure	1
	1.2.1	Infiltration or ventilation loss	1
	1.2.2	Structure or fabric loss	2
1.3	Heat requ	irements of heated building	4
1.4	Heat flow	through a solid wall	5
1.5	U-value e	stimation	8
1.6	Calculati	ons of the heat requirement	
	of space	heating	9
	1.6.1	Ground floor	9
	1.6.2	Ceiling (floors with space below)	10
	1.6.3	Roof	11
	1.6.4	Brick wall 200mm thick,	
		plaster on both sides	12
	1.6.5	Concrete wall 200mm thick,	
		plaster on both sides	13
	1.6.6	Brick wall 100mm thick,	
		plaster on both sides	14
	1.6.7	Brick partition wall 200mm thick	15
	1.6.8	Partition wall, 100mm thick	16
	1.6.9	Concrete partition wall 200mm thick	17
	1.6.10	Glazing	18
	1.6.11	Wooden doors	18
	1.6.12	Table for U-values	18
1.7	Design com	nditions	18
	1.7.1	Outside design conditions	19
	1.7.2	Winter inside conditions	19
1.8	Calculati	ons of the heating loads	20
1.9	Sample ca	lculations of the	
	heat loss	es in a room	21
	1.9.1	At section C, First floor, room 1	21
1.1	0 Tables of	heat losses of each room	22
1.1	1 Total hea	t losses	47

CHAPTER 2	: Sele	ction of the system	
	for	the space heating	48
2.1	Introduct	ion	48
2.2	Selection	of the heating method	48
2.3	Selection	of the method	
	of hot wa	ter circulation	49
2.4	Selection	of the type of circuit	51
2.5	Radiator :	selection	53
	2.5.1	Design water temperature	55
	2.5.2	Conversion factor	55
	2.5.3	Safety factor	57
	2.5.4	Procedure for selection the radiators	57
	2.5.5	Specimen selection of a radiator	58
	2.5.6	Tables of the selected radiators	58
2.6	Pipe sizi	ng	63
	2.6.1	Procedure for sizing the pipework	64
	2.6.2	Specimen calculation and selection	
		of pipe diameter	64
	2.6.3	Pipe sizing tables	65
2.7	Circulati	ng pump for the heating circuit	74
	2.7.1	Pump positioning	74
	2.7.2	Pump sizing	75
	2.7.3	Pump sizing procedure	76
	2.7.4	Pump sizing calculations	76
		2.7.4.a For section C and B	76
		2.7.4.b For section A zone 1	78
		2.7.4.c For section A zone 2	80
		2.7.4.d For section D zone 3	80
CHAPTER 3	: Hot	water supply	82
3 1	Introduct:	ion	82
	Local wate		82
	3.2.1	Instant heater	82
	•	Storage water heater	83
	3.2.3	Instantaneous gas-fired	00
		water heaters	84
3.3	Central ho	ot water systems	84
	3.3.1	Direct system	85
	3.3.2	Indirect system	86
3.4		of method for hot-water supply	86

	4.1	Introduction	89
	4.2	Boiler sizing	89
	4.3	Burner sizing	90
	4.4	Expansion tank sizing	91
	4.5	Chimney sizing	96
	4.6	Fuel oil tank sizing	98
CHAP	rer 5		
		technical specification	100
	5.1	Introduction	100
	5.2	Boiler selection	100
	5.3	Burner selection	101
	5.4	Pump selection	101
	5.5	Expansion vessel selection	102
	5.6	Fuel oil tank selection	103
	5.7	Radiator selection	104
	5.8	Selection of water pipe	104
	5.9	Insulation selection	104
	5.10	Selection of control instruments	105
	5.11	Selection of individual room	
		temperature control	105
CHAP	rer 6	Cost analysis	106

89

CHAPTER 6: Cost analysis

CHAPTER 4: Equipment sizing

CONCLUSIONS

APPENDICES

DRAWINGS

REFERENCES

ARCHITECTURAL DRAWINGS

ACKNOWLEDGEMENT

I want to express my sincere thanks to my project supervisor Mr. Th. Symeou, lecturer at the H.T.I for his guidance and valuable help in completing this project.

I would also like to express my sincere thanks to the engineers of Elemec and Akritas engineering consultants. They very willingly allowed me to borrow from their rich and broad knowledge on the subject.

Finally, I wish to extend my thanks to all persons whose help contributed to the completion of this project.

SUMMARY

The purpose of this project is to design a central heating and hot water supply system, for a school consisting of four sections. The three sections consist of two floors and the other one, another floor.

The name of the school is "10th Primary School of Paphos" and is located in Paphos. The architectural drawings have been supplied by the mechanical department of the Ministry of Education.

Basically this project is divided into six chapters. The first chapter is about the estimation of the heat requirements of the school, the second chapter involves the system of the space heating, whereas the third chapter describes the system for the hot water supply services.

Furthermore, the fourth chapter includes the sizing of the plant equipments, and the fifth involves their selection from various catalogues and other technical specification of the plant equipments.

Finally in the last chapter, chapter six, the cost analysis of the whole design is described.

PAPAZACHARIOU ZACHARIAS

DESIGN OF A CENTRAL HEATING AND HOT WATER SUPPLY FOR A SCHOOL

INTRODUCTION

The control of indoor climate is an important industry in Cyprus and throughout the world generally. Only in a few favored areas of the earth's temperate zones can people live confortably and work effectively the year round without some form of winter heating.

The science and practice of creating a controlled climate, that is, conditions that are conducive to human comfort is called air condition. The term air conditioning is sometimes misunderstood or misused. Often only cooling is implied when air conditioning is mentioned. However in practice to provide complete air conditioning a system must accomplish all the following: HEATING, HUMIDIFICATION, DEHUMIDIFICATION, COOLING, VENTILATION, FILTERING, and CIRCULATION.

The heating system to be designed in this project should create thermal comfort conditions at the internal space for all classes and offices. To achieve this, the heat requirements of all rooms must be determined so as to be able to select the appropriate equipment that will satisfy these requirements.

The system chosen to be used in this project is the central heating. This system will required a boiler and a burner that will consume gas oil fuel in order to heat up the water.

Two plantrooms used in this project because of the large distance between the four sections. The one plantroom is used for section B & C and the other for the section A & D.

The heat emmiting units will be radiators placed at each space to be heated, and they will be connected with the boiler by means of pipes, of different diameters.

The other system which is to be designed is the hot water supply for there are rooms which need hot water (cantine, private sanatorium and class of catering).

There are two methods for hot water supply, the central and the local method. In this project because there are only few points which need hot water supply, the second method (local) is used.