HIGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING DEPARTMENT DIPLOMA PROJECT

IMPLEMENTATION OF QUALITY CONTROL PROCEDURES IN A FOOD INDUSTRY

M / 795

BY: ALEXIS DEMOSTHENOUS

IMPLEMENTATION OF QUALITY CONTROL PRODDERS IN A FOOD INDUSTRY

by

Alexis Demosthenous

Project Report Submitted to:

the Department of Mechanical Engineering

of the Higher Technical Institute

Nicosia Cyprus

in partial fulfilment of the requirements

for the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

June 1997

-1	GHER	PROJECT
	ENCAL	ONIO
	TUTE	d/17

CONTENTS

i

1

1

ž

					Page
ACKNOWLEDGEMENT					
ABSTRU	СТ				
					2
CHAPTE	R1 .		4		
1.	Introduction to quality control		4		1
1.1	Meaning of the "quality"				1
1.2	Meaning of "control"				2
1.3	Meaning of "quality control"				2
1.4	The object of quality control				2
1.5	Responsibility of quality		-		3
1.6	Total quality management (T.Q.M.)				4
CHAPTE	R 2				
2	Introduction to S.P.C.				7
2.1	Collecting data				8
2.2.1	Measurable data				9
2.2.2	Countable data				9
2.3	Control charts				9
2.4	Types of control charts	-			10
2.4.1	Variable control charts				10
2.4.2	Attribute control charts				11
2.4.3	The Histogram				14
2.4.4	The Pareto chart				15
2.4.5	Cause - and - effect diagram				17
2.4.6	Scatter diagram				19
2.4.7	Run chart				20
2.4.8	Flow diagram				21

CHAPTER 3

3.1	Flow diagram in REGIS DIARIES (for ice-cream)	•	22
3.2	Milk Reception		23
3.3	Tanker reception	4	23
3.4	Can reception		24
3.5	Raw milk storage	2	24
3.6	Clarification		25
3.7	Mixing and pasteurization		27
3.8	Homogenization		27
3.9	Heat exchanges		31
3.10	Ageing vats area	:	32
3.11	Addition of flavouring and colouring matter	:	32
3.12	Freezer	× 3	32
3.13	Filling and packing	:	34
3.14	Quick freezing plant	3	34
3.15	Refrigerator stores	3	35
3.16	Packing machine description for ice-cream	3	36
3.17	Disadvantage of the process	3	36
3.18	Flow diagram (for yoghurt)		38
3.19	Ultrafiltration	3	39
3.20	Pasteurizing		39
3.21	Homogenization	3	39
3.22	Preparation of culture	3	39
3.23	Heat exchanger	4	40
3.24	Filling and packing	4	40
3.25	Filling and packing machine description	4	40
3.26	Disadvantage of the process	4	41
3.27	The cooling process	4	42
3.28	The evaporator	4	43
3.29	The compressor	2	44
3.30	The condenser	2	45

:

ŧ

ľ

CHAPTER 3 (CONT.)

3.31	Compressed air	-	48
3.32	Production of heat		49
3.33	The steam boiler	3	50

:

-

ŧ

ç'

CHAPTER 4

4.1	Cleaning of diary equipment	an ing	51
4.2	Cleaning procedures	-	51
4.3	Cleaning in place (C.I.P.)		52

CHAPTER 5

5	INSPECTION	53
5.1	Incoming Inspection	53
5.2	Process Inspection	53
5.3	Final inspection	54
5.4	Inspection and testing for quality control	54
5.4.1	Screening inspection	54
5.4.2	LOT - BY - LOT inspection of sampling	55
5.5	Acceptance sample	55
5.6	Sample plans	55
5.6.1	Single sampling plan	55
5.6.2	Double sampling plan	56
5.6.3	Multiple sampling plan	56
5.7	Operating characteristic (O.C.) curves	56
5.8	The acceptable quality level (AQL)	57
5.9	The toy tolerance percent defective (LTPD)	57
5.10	Inspection in REGIS DAIRIES	57
5.10.1	Incoming inspection in REGIS	57
5.10.2	Process inspection	57
5.10.3	The final inspection	58

CHAPTER 5 (CONT.)

58
58
59
59
60
60

1 į

CHAPTER 6

6	EQUATION FOR CONTROL CHARTS	61	4
6.1	Equation for subgroup	61	
6.2	Control limits equation	62	
6.2.1	For average	62	
6.2.2	For range	63	i.
6.3	Attribute equation for control limits	64	1
6.3.1	For P charts	64	!
6.3.2	For NP charts	65	
6.3.3	For C charts	65	1.00
6.3.4	For u charts	66	
6.4	Process capability	67	s!
6.4.1	Capability ration (Cr)	68	
6.4.2	Capability of process (Cp)	69	
6.4.3	Capability in relation to the specification mean (Cpk)	69	

CHAPTER 7

7	DATA CHARGTING AND ANALYSIS	70
7.1	Chart reference 1	71
7.2	Chart reference 2	73
7.3	Chart reference 3	75
7.4	Chart reference 4	77
7.5	Chart reference 5	79

CHAPTER 7 (CONT.)

7.6	Chart reference 6	81
7.7	Table of measurement	82
CHAPT	ER 8	
8.1	Suggestion for improving quality control	85
8.2	Cause and effect diagram for yoghurt	86
	~	
CHAPTI	ER 9	
9	QUALITY COSTING	87
9.1	Prevention costs	89
9.2	Appraisal costs	89
9.3	Failure costs	90
9.3.1	Internal failure	90
9.3.2	External failure	91
9.4	Lost opportunity	91
9.5	Quality costing in REGIS DAIRIES	91
9.5.1	Prevention costs	91
9.5.2	Appraisal costs	92
9.6	Suggestion for improving the quality and their cost	92
CONCLU	ISSIONS	93
8		
SUMMAR	RY	96
APPEND	ICES	98

¢

1

99

REFERENCES

ACKNOWLEDGEMENTS

I would like to express me thanks to my project supervisor Mr Rousias Damianos lecturer in mechanical engineering at H.T.I who gladly accepted the supervision of my work.

Also my thanks to Mr. Ageli I. Ioannis for his help and quittance to my whole work.

I wish also to thank Mr Stavrinides production management in Regis industry for his helpful information.

ALEXIS DEMOSTHENOUS 3rd year student in Mechanical Engineering H.T.I.

*

ABSTRACT

The objectives of this project are to study in detail the theory on quality control and also to investigate the quality control procedures and methods in food industry.

Also select specific products and suggest methods of improvement of the existing quality practices.

Furthermore to carry out sampling measurements in order to test the effectiveness of the suggested techniques and to measure the process capability of the process by

- 1. Variable data and
- 2. Attribute data.

2.

Also to test whether the process is in control or not by the use of various statistical process control charts.

í

ł

Finally to carry out an economic comparison between the existing and proposed quality control procedures and techniques.

CHAPTER 1

1 Introduction to quality control

For the most every product or services, there is more than one organization trying to make a sale depends on price which is the major factor but also depend on quality of product.

A poor quality can be very expensive for both the producing firm and the customer. Consequently, firms employ quality management tactics. Quality management or as it is more commonly called, quality control is critical through out the transformation process. The major roles of the operation manager is to ensure that his firm can deliver quality product at_the_right place, at the right time and at the right price.

1.1 Meaning of the "quality"

There is variety of definition of quality.

Some definition are given below:

- a) Fitness for use. This is the degree to which a specific product satisfies the requirements of specific consumers.
- b) Quality of the design. This is the degree to which a product has the potential to satisfy the customer.
- c) Quality characteristics. This is used to denote any distiquishing feature of a product, i.e. appearance, dimension, performance.

Quality is measured in terms of the ability of the product meet reasonable applicable specifications.

1