HIGHER TECHNICAL INSTITUTE COURSE IN COMPUTER STUDIES

. sⁱ

DIPLOMA PROJECT

SOFTWARE TOOL TO TEACH SCIENCE IN A PRIMARY SCHOOL

CS/190

MARIA PHILIPPOU

17 JUNE 1998

DEVELOPMENT OF SOFTWARE TOOL TO TEACH SCIENCE IN A PRIMARY SCHOOL By Maria Philippou

SUMMARY

The software tool for teaching science was proposed by Mrs. Maria Hadjiyannakou lecturer of the computer studies department, of the Higher Technical Institute. It was issued as one of the requirements for the diploma in Computer Studies.

The software tool was designed both for self-study by students in their houses, as well as for teaching tool by the teacher while teaching in the class. It includes all theory, laboratories and tests included in the science books " $\Pi p \omega \tau \alpha B \eta \mu \alpha \tau \alpha$ $\sigma \tau \eta \nu E \pi \iota \sigma \tau \eta \mu \eta$ " issued by the Ministry of Education.

The software tool for teaching science was developed using the Asymmetrix Toolbook II, version 5, since it was the most appropriate for the implementation of the tool.

The software tool for teaching science can be run on a Pentium PC that has at least 24 MB RAM and 2GB Hard Disk. It runs under Windows 95 environment.

CONTENTS

ACKNOWLEDGEMENTS		Ι	
SUMMARY			II
INT	INTRODUCTION		
CH	APTE	R 1 - INVESTIGATION PHASE	
1.1	INTR	RODUCTION	1
1.2	INIT	IAL INVESTIGATION	2
	1.2.1	Overview Narrative	2
	1.2.2	Persons involved in the existing work	2
	1.2.3	Existing work done in schools and its relation with requests	
		of the proposed system	2
	1.2.4	Information about existing science books	3
1.3	FEASIBILITY STUDY		
	1.3.1	Overview Narrative	4
	1.3.2	Financial Feasibility	4
	1.3.3	Operational Feasibility	6
	1.3.4	Technical Feasibility	6
	1.3.5	Schedule Feasibility	7
	1.3.6	Human Factors Feasibility	7
	1.3.7	Conclusion	8

CHAPTER 2 - ANALYSIS AND GENERAL DESIGN PHASE

2.1	INTRODUCTION	9
2.2	EXISTING SYSTEM REVIEW	10
	2.2.1 Overview Narrative	10
	2.2.2 Organisation	10
	2.2.3 Description of the current processing	11
	2.2.4 Inputs to the current system	11
	2.2.5 Outputs from the current system	11
2.3	NEW SYSTEM REQUIREMENTS	12
	2.3.1 Overview Narrative	12
	2.3.2 System Function	12
	2.3.3 Processing	13
	2.3.4 Data Dictionary	14
	2.3.5 Outputs to the users	14
	2.3.6 Inputs to the users	15
	2.3.7 User Interface with the system	15
2.4	NEW SYSTEM DESIGN	16
	2.4.1 Overview Narrative	16
	2.4.2 System Function	16
	2.4.3 Processing	16
	2.4.4 Data Dictionary	16
	2.4.5 Inputs to the system and Outputs to the User	17
	2.4.6 Performance Criteria	18
	2.4.7 Security and Control	19

2.5	IMPLEMENTATION AND INSTALLATION PLANNING	20
	2.5.1 Overview Narrative	20
	2.5.2 Preliminary Detailed Design and Implementation Plan	20
	2.5.3 Preliminary System Test Plan	21
	2.5.4 User Training	21
	2.5.5 Preliminary Installation Plan	22
CH	APTER 3 - DETAILED DESIGN AND IMPLEMENTATION PHASE	
3.1	INTRODUCTION	23
3.2	TECHNICAL DESIGN	24
	3.2.1 Overview Narrative	24
	3.2.2 Human/Machine Interfaces	24
	3.2.3 Application Software Design	25
	3.2.4 Logging Requirements	25
3.3	TEST SPECEFICATION AND PLANNING	26
	3.3.1 Overview Narrative	26
	3.3.2 Test Specifications	26
3.4	PROGRAMMING AND TESTING	28
	3.4.1 Overview Narrative	28
	3.4.2 "TOOLBOOK" – The Tool for the Implementation	28
	3.4.3 Programming Sequence	28
	3.4.4 Testing	29

3.5	USER TRAINING	30
	3.5.1 Overview Narrative	30
	3.5.2 User Training Description	30
	3.5.3 User Manual	30
26		21
3.6	SYSTEM TEST	31
	3.6.1 Overview Narrative	31

3.6.2 Tests to be applied on the Software Tool for Teaching Science 31

CHAPTER 4 - INSTALLATION

4.1	INTRODUCTION	32
4.2	SYSTEM INSTALLATION	33
	4.2.1 Overview Narrative	33
	4.2.2 Installation of the Software Tool for Teaching Science	33
	4.2.3 Conclusion	33

CONCLUSION

REFERENCES

APPENDICES

Appendix A – Gantt Chart

Appendix B – Organization Chart

Appendix C – Data Flow Diagrams for the existing manual process

Appendix D – Data Flow Diagrams for the proposed system

Appendix E – Data Dictionary

Appendix F – System Flowcharts

Appendix G – Screen Design

Appendix H – Hierarchic Structure of system modules

35