HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

IMAGE PROCESSING APPLIED IN TELEMEDICINE USING MATLAB

PROJECT RELIASER E.4401

BY

AMOREAS (#IRISTOFICZOU

CLASS 3E2

現點語 2006

HIGHER TECHNICAL INSTITUTE

ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

IMAGE PROCESSING APPLIED IN TELEMEDICINE USING MATLAB

Project number E.1401

by

Andreas Christoforou

Class 3E2

JUNE 2006

IMAGE PROCESSING APPLIED IN TELEMEDICINE USING MATLAB

by

Andreas C Christoforou

Project report

submitted to department of

Electrical Engineering

of the Higher Technical Institute

Nicosia, Cyprus

in partial fulfillment of the requirements

for the diploma of

TECHNICIAN ENGINEER in ELECTRICAL ENGINEERING

LIST OF CONTENTS

LIST OF CONTENTS

CKNOWLEDGMENTS	i
UMMARY	ii

1.2 Wireless technologies	6
1.2.1 First generation wireless networks	6
1.2.2 Second generation (2G) wireless networks	6
1.2.3 Second-generation (2G+) wireless networks	7
1.2.4 Third-Generation (3G) wireless networks	8
1.2.5 Forth-Generation (4G) wireless networks	13
Conclusion	15

CHAPTER 2 Image and video compression techniques

used in telemedicine

Introd	uction	17
2.1	Introduction to compression	17
2.2	Image compression	18
2.2.1	JPEG	18
2.2.1	JPEG2000	18
2.3	Video compression	21
2.4	Compression techniques used in telemedicine	22
2.4.1	JPEG2000 as used in telemedicine	23
Conclu	usion	23

CHAPTER 3 Quality evaluation of medical images using

MATLAB software

Introduction	25
3.1 Evaluation metrics	
3.1.1 Normalized mean square error (MSE)	
3.1.2 Normalized signal to noise ratio (SNR)	26
3.1.3 Normalized peak signal to noise ratio (PSNR)	
3.1.4 Normalized root mean square error (RMSE)	27
3.1.5 Normalized geometric average error (GAE)	
3.1.6 Normalized error summation in the form of the	
Minkowski metrics (m3, m4)	
3.1.7 Universal quality index (q_index)	
3.1.8 Structural similarity index (ssim index)	
3.2 Image processing using MATLAB	29
3.2.1 What is MATLAB	
3.2.2 The MATLAB System	
3.2.3 Image formats supported by Matlab	
3.3 Comparison of images	34
Conclusion	
CONCLUSIONS	
REFERENCES	
APPENDIX	44

ACKNOWLEDGMENTS

For the precious help and special advices towards the completion of the project I warmly acknowledge and thank my project supervisor Dr. Marios Kassinopoulos lecturer in Electronics in the Electrical Engineering Department of the Higher Technical Institute. I would also like to express my sincere thanks to Mr. Sotos Ch Voskarides lecturer in Electronics in the Electrical Engineering Department of the Higher Technical Institute and Dr. Christos .P. Loizou lecturer in the Department of Computer Science of Intercollege.

IMAGE PROCESSING APPLIED IN TELEMEDICINE USING MATLAB

by

Andreas Christoforou

SUMMARY

The purpose of this project is to present the methodology used for compression and transmission of medical images in telemedicine and also to study the process required to compress medical images and the methods used. Additionally the available wireless technologies for the transmission of images through a telemedicine channel were investigated. An other objective is the comparison of the original image with the processed image (compressed or transmitted) both visually and mathematically using certain evaluation metrics. The quality evaluation of the images using the evaluation metrics was done using the MATLAB software

INTRODUCTION

When appropriate health professionals cannot be physically present to diagnose patients, telecommunications technology can be used to connect these professionals to those in need of their expertise. In hospitals and homes, telemedicine has been shown to reduce the cost of health-care and increase efficiency through better management of chronic diseases, shared health professional staffing, reduced travel times, and fewer or shorter hospital stays [1].

Telemedicine can be defined as the distant delivery of health care and remote sharing of medical knowledge using telecommunication means. In recent years, several telemedicine applications have been successfully implemented over wired and wireless communication technologies. However, nowadays, modern wireless telecommunication means like GSM and GPRS and the UMTS (Universal Mobile Telephone System) mobile telephony standards allow the operation of wireless telemedicine systems freeing the medical personnel and/or the patient from fixed locations[9,11].

Delivery of medical images or videos is one of the most important benefit of telemedicine The size of medical images (X-ray, MRI) transmitted through a telemedicine channel must be low enough so the delivery of the information is done fast.

To reduce the size of the images with out having any distortion or data loss we must compress them with the best compression standard. The compression standard that we examine is the JPEG2000. JPEG2000 is a newborn standard for image compression and transmission. It may compress efficiently images in lossless mode.

Images will be compared to find out if any distortions or losses created during the compression or the transmission through GPRS, ADSL or 3G telemedicine networks.

This will be done first visually and then mathematically using MATLAB software.