SITE INVESTIGATION

by

Machlouzaridou Theophania

Project Report

Submitted to

the Department of Civil Engineering

of the Higher Technical Institute

Nicosia Cyprus

in partial fulfillment of the requirements

for the diploma of

TECHNICIAN ENGINEER

in

CIVIL ENGINEERING

June 1990

SUMMARY

This project is mainly intended to analyse the objectives of Site Investigation, in conjunction with the main methods used for S.I for the Construction of buildings, and also to give special emphasis on methods used nowadays in Cyprus.

Chapter 1, states initially what information should be obtained in the Course of a Site Investigation. Secondly, the various Boring and Drilling methods used for actual S.I are described in order the general suitability of the site to be assessed. Finally, the geophysical methods are analysed with emphasis on electrical resistivity, seismic and magnetic methods and also foundation properties of various types of soils are stated.

Chapter 2, describes the unsuitable soil and rock conditions for foundation design, and the methods applied to overcome these conditions.

Chapter 3, deals with the methods used for sampling. Information is given for disturbed and undisturbed samples and finally both the laboratory and in-situ methods of soil testing are described.

In chapter 4, the methods to be applied in any design, and the correct way of planning the work are mentioned. This is to enable an adequate and economical design to be prepared, giving emphasis to the design of dams and foundations.

Chapter 5, deals with the present day practice of Site Investigation in Cyprus for building construction. SUMMARY

INTRODUCTION TO SITE INVESTIGATION 1

CHAPTER 1: TO ASSESS THE GENERAL SUITABILITY OF SITE FOR THE PROPOSED WORKS.

1.1	Information required from a site investigation	5
1.2	Methods of investigation	7
1.2.1	Exploration in soils	7
	Examination in - situ	7
1.2.1.1	Trial pits	7
1.2.1.2	Shafts and headings	8
1.2.1.3	T.V and borehole cameras	8
	Boring and drilling	9
1.2.1.4	Percussion boring	9
1.2.1.5	Mechanical augers	13
(1)	Short flight augers	13
(2)	Continuous flight augers	13
(3)	Bucket augers	14
1.2.1.6	Hand and portable augers	15
1.2.1.7	Wash boring	16
1.2.1.8	Rotary drilling	17
(1)	Open – hole drilling	17
(2)	Core drilling	18
1.2.2	Exploration in rocks	20

1.2.2.1	Test pits	20
1.2.2.2	Drilled shafts	20
1.2.2.3	Rotary core drilling	21
1.2.3	Water level observations	21
1.2.4	Excavation for works over water	22
1.3	Geophysical methods	24
1.3.1	Generally	24
1.3.2	Electrical resistivity method	25
1.3.3	Seismic refraction method	28
1.3.4	Magnetic method	29
1.4	Discussion of investigation results in	
	relation to construction design	31

CHAPTER 2: TO FORSEE AND PROVIDE AGAINST DIFFICULTIES THAT MAY ARISE DURING CONSTRUCTION AND COMPLETION OF THE PROJECT DUE TO GROUND AND OTHER LOCAL CONDITIONS.

2.1	Foundation properties of soils and rocks	34
2.1.1	Properties of soil types	34
2.1.1.1	Non - cohesive soils	34
2.1.1.2	Cohesive soils	35
2.1.2	Properties of rock types	36
2.1.2.1	Weathering	36
2.1.2.2	Faulting	37
2.1.2.3	Jointing	37

2.2	Methods to overcome unsuitable graind	
	conditions	38
2.2.1	Excavation support	38
2.2.1.1	Timbering	38
2.2.1.2	Shoring	38
2.2.1.3	Anchoring	39
2.2.2	Ground water control	42
2.2.2.1	Sheet piling	42
2.2.2.2	Diaphragm walls	42
2.2.2.3	Thin - grouted membrane	43
2.2.3	Temporary water removed	47
2.2.3.1	Pumping from sumps	47
2.2.3.2	Well pointing	47
2.2.4	Methods to prevent settlement	50
2.2.4.1	Strip foundations	50
2.2.4.2	Raft foundations	50
2.2.5	Pile foundations	53
2.2.5.1	Timber piles	53
2.2.5.2	Concrete piles	53
2.2.5.3	Steel piles	55

CHAPTER 3: SAMPLING AND TESTING

3.1	Sampling	59
3.1.1	General	59
3.2	Types of samplers	60
3.2.1	Open – drive samplers	60

đ

3.2.2	Thin - walled samplers	61
3.2.3	Split - barrel sampler	61
3.2.4	Stationary piston sampler	62
3.2.5	Continous sampler	64
3.2.6	Compressed our sampler	64
3.3	Testing	65
3,3,1	General	65
3.3.2	In - situ testing	67
3.3.2.1	Shear Vane test	67
3.3.2.2	Plate bearing test	68
3.3.2.3	Standard penetration test	70
3.3.2.4	Static - cone penetration test	72
3.3.3	Laboratory testing	74
3.3.3.1	The Atterberg Limit test	74
3.3.3.2	Particle size distribution test	75
3.3.3.3	Direct shear test (shear box test)	77
3.3.3.4	Triaxial compression test	78
3.3.3.5	Unconfined compression test	83
3.3.3.6	Consolidation test	83
3.4	Exploration report	87

CHAPTER 4: TO ENABLE AN ADEQUATE AND ECONOMICAL DESIGN TO BE PREPARED

4.1	General	
4.1.1	Design of dams	
4.1.2	Design of foundations	93

CHAPTER 5: PRESENT DAY PRACTICE IN CYPRUS

5.1	Preliminary site investigation	96
5.2	Exploration report	97
5.2.1	Boring and drilling	97
5.3	Sampling	98
5.4	Testing	98
5.4.1	In - situ testing	98
5.4.2	Laboratory testing	99
5.5	Site investigation report	100
1.	Scope of investigation	101
2.	General description of the proposed structure	
	for which the exploration has been conducted .	101
з.	Geological conditions of site	101
4.	Drainage facilities at the site	102
5.	Details of boring	102
6.	Description of subsoil conditions as determined	
	from the soil and rock samples collected	102
7.	Ground water table as observed from the	
	borehole	103
8.	Details of foundation recommendations and	
	alternatives	103
9.	Anticipated construction problems	104
10.	Limitations of the investigation	104

CONCLUSIONS