INSTALLATION AND TESTING OF A FLOW/LEVEL CONTROL SYSTEM

by

Tsiartas Lukas

Project Report Submitted to

the Department of Mechanical Engineering of the Higher Technical Institute

Nicosia Cyprus

in partial fulfillment of the requirements

for the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

June 1993

project M/661

<u>ACKNOWLEDGEMENTS</u>

I wish to express my thanks to my project supervisor Mr. P. Eleftheriou for his usefull guidance during the process of completion of this project.

Also thanks are to Mr C. Kaloyirou Laboratory Assistant of the H.T.I. Plant laboratory.

Finally I would like to express my thanks to Miss Yioula Kalorkoti for typewriting this project and to everyone else who helped in the completion of this project.

ABSTRACT

This project deals with the installation and testing of an automatic Flow/level Control system which will be used for experimental purposes at the H.T.I. Control Lab.

The system was installed on a trolley which was constructed to meet the needs of the system. $\label{eq:constructed}$

Most equipment used in the system were already on hand from a similar project performed by Hadjiloizis Kyriacos in 1986.

CONTENTS

			<u>Page</u>			
Acknowle	dgements		I			
Abstract	_		II			
Introduction						
Chapter	1: DESIGN	ANALYSIS				
	1 1	Problem definition	1			
1.1. 1.2. 1.2.1.		Features	1			
		Possible sensing methods	1			
	1.2.1.	1. Pressure sensing method	1			
•		2. Buddler or purge method	1			
		3. Force transducer	2			
		4. Motion transducer	2			
		5. Sonic sensing emthod	3			
		6. Radioisotopes sensing method	. 3			
		7. Conductivity sensing method	4			
		8. Capacitance sensing method	4			
		9. Optical sensing method	5			
		10. Hot wive sensing method	5			
	1.2.2.	Controllers	6			
1.2.3.		Transmitters	8			
	1.2.4.	Control valves	9			
	1.2.5.	Piping arrangements	10			
	1.3.	Morphological analysis table	10			
	1.4.	Final solution	13			
Chapter	2: THEORE	ETICAL ANALYSIS				
	2.1.	Derivation of the block diagram				
y		of the level control system	14			
	2.1.1.	Conditions of validity	15			
	2.1.2.	Tank dynamics	15			
	2.1.3.	Differential pressure				
		transmitter's block diagram	17			

	2.1.4. 2.1.5.		Controller's block diagram (PI)	18	
			Complete block diagram of the		
			level control system	19	
	2.2.		Derivation of the transfer		
•			function of the level control		
			system	19	
Chapter	3:	INSTALL	ATION OF THE FLOW/LEVEL		
		CONTROL	SYSTEM	23	
Chapter	4:	TESTING	CALIBRATION AND		
COM		COMMISS	CONING OF THE SYSTEM	24	
	4.	.1.	Sequencial testing and		
			commissioning	24	
•	4.	.1.1.	Testing the accuracy of the		
			pressure gauges	24	
	4	.1.2.	Testing the control valve	24	
	4	.1.3.	Calibration and commissioning		
			the Transmitter	25	
	4	.1.4.	Commissioning the Controller	26	
-	4	.2.	Loop commissioning	26	
Chapter	5:	PROCESS	OPTIMIZATION	27	
5		.1.	Optimum settings of the		
			Controller	27	
	5	.2.	Optimum settings according		
			to Ziegler and Nichols	27	
Chapter	6:	SUGGEST	ED EXPERIMENTS	30	
E		EXPERIM	IMENT 1		
EXPERIM			ENT 2	33	
		EXPERIM	ENT 3	34	
COMMENT	s			35	

APPENDICES:	Appendix	1	_	Transmitter	36
	Appendix	2	_	Controller	37
	Appendix	3	_	Control valve	38
	Appendix	4		Instrument Specifications	39
	Appendix	5		Detail Drawing of the	
				control system	
REFERENCES					40