HIGHER TECHNICAL INSTITUTE CIVIL ENGINEERING COURSE DIPLOMA PROJECT

AIR POLLUTION MODELLING

ROBIN CHRISTOPHI

C/928

JUNE 2001

AIR POLLUTION MODELLING

BY ROBIN CHRISTOPHI

Diploma project

Submitted to the Department of Civil Engineering of the Higher Technical Institute Nicosia Cyprus

In partial fulfilment of the requirements for the diploma of

TECHNICIAN ENGINEER

In

CIVIL ENGINEERING

June 2001

HIGHER TECHNICAL INSTITUTE NICOSIA CYPRUS

CIVIL ENGINEERING DEPARTMENT Academic Year 2000/2001 Diploma Project Number: C/928

Title: Air Pollution Modelling

Objectives:

1. To state and define major air pollutants and their sources.

2. To state effects of air pollution on the environment (humans, buildings, vegetations)

3. To state Meteorological and Natural purification processes.

4. To present a case study by modelling an area under investigation.

Terms and Conditions

1. The project's supervisor will assign site of investigation.

Student: Robin Christophi

Supervisor: Mr N.Kathijotes

External Assessor: Mr A.Antoniou

ACKNOWLEDGEMENT

I would like to thank my project supervisor Mr N.Kathijotes, Mr T.Aphames of the department of traffic studies and Mr K.Sophokleous for his part in the software programming.

SUMMARY

The science that deals with the monitoring and design of models based around air pollution is discussed. Technology is a major key in achieving it. With computers we are able to design the perfect world unfortunately that's not so in the real world. And therefore air pollution will be a problem that will have to deal with for some time yet.

In this project an effort for the application of computer software in the fight against air pollution is set as a target.

	Page
1.EFFECTS OF AIR POLLUTION	1
1.1HUMAN	1
1.1.1 Air toxics / Health effects / Asthma	2
1.1.2 Air toxics / Health effects / Non-respiratory	2
1.1.3 Diagnosis	3
1.1.4 Asthma	4
1.1.5 Coronary Artery Disease	6
1.2 PROPERTY	6
1.3 VISIBILITY	7
2. AIR POLLUTANTS	9
2.1 Carbon monoxide (CO)	10
2.2 Hydrocarbons	10
2.3 Sulphur dioxide (SO2)	11
2.4 Particulates	11
2.5 Nitrogen oxides (NO and NO2)	12
2.6 Photochemical oxidants	12
2.7 Lead	12
2.8 Hazardous Air Pollutants (HAPs)	13
2.9 Carbon dioxide (CO2)	13
3. AIR POLLUTION CONTROL PLANTS	16
3.1 Particulate and SO2 Emissions	16
3.1.1 Cyclone Separators	16
3.1.2 Scrubbers	17
3.1.3 Semidry Scrubbers	17
3.1.4 Electrostatic Precipitators	18
3.2 VOC (Volatile Organic Chemicals) Emissions	18
3.2.1 High VOC Concentrations (>500 ppm)	18
3.2.2 Moderate VOC Concentrations (100-500 ppm)	19
3.2.3 Low VOC Concentrations (<100 ppm)	21
3.3 NOx Emissions	21

3.3.1 Selective Catalytic Reduction (SCR)	21
3.3.2 Exxon Thermal DeNOx	21
3.4 Street Box Urban Pollution Monitor	22
4. METEOROLOGICAL AND NATURAL	23
PURIFICATION PROCESSES	
4.1 Natures Cleans House	24
5. AIR POLLUTION MODELLING	24
5.1 Policy Issues	24
5.2 Instruments For Air Quality Assessment Studies	27
5.3 Limitations of air pollution models	28
5.4 Application Areas Of Air Pollution Models	29
5.5 Regulatory Purposes	30
5.6 Policy Support	31
5.7 Public Information	31
5.8 Scientific Research	31
5.9 Scales Of Atmospheric Processes	32
5.10 Air Pollution Model Types	33
5.11 Meteorological Models	37
5.12.1 Global Scale Air Pollution Models	38
5.12.1.1 General Remarks	38
5.12.2 Regional-to-continental Scale Air Pollution Models	39
5.12.2.1 General Remarks	39
5.12.2.2 Input Data Requirements	40
5.12.2.3 Meteorological Data.	40
5.12.2.4 Emission Data.	41
5.12.3 Local-to-regional scale air pollution models	41
5.12.3.1 General remarks	42
5.12.3.2 Input Data Requirements	44
5.12.3.3 Emission Data	45
5.12.4 Local Scale Air Pollution Models	46
5.12.4.1 General Remark	46
5.12.4.2 Input Data Requirements	46

5.13 Quality Assurance Of Air Pollution Models	47
5.14 Model Documentation	47
5.15 Model Evaluation	48
5.16.1 Local scale	49
5.16.2 Local-to-regional scale	49
5.16.3 Regional-to-continental scale	50
5.16.4 Global scale	51
5.17 Status Of Model Documentation And Evaluation	52
5.18 Model Development	54
5.18.1 Global Scale	54
5.18.2 Regional-To-Continental Scale	55
5.18.3 Local-To-Regional Scale	56
5.18.4 Local scale	57
6. AIR POLLUTION IN CYPRUS	59
7. FIXED BOX MODEL	60
7.1 Theory	60
7.2 My Fixed Box Model	61
7.2.1 Program	64
7.2.2 Running The Program	68
8. CONCLUSIONS	71
9.REFERENCES	72