AN EXPERIMENTAL INVESTIGATION INTO THE MATERIAL PROPERTIES OF POLYPROPYLENE FIBRE IN CEMENT COMPOSITES

by

Michael Vassiliou Kyriacos Parpounas

Project report submitted to the Department of Civil Engineering of the Higher Technical Institute Nicosia, Cyprus

in partial fullfillment of the requirements for the diploma of TECHNICIAN ENGINEER

in

CIVIL ENGINEERING

May 1990

-I-

ABSTRACT

This study is divided into four parts. In the first part a literature survey on fibre reinforced cement composities was made, including a hystorical backround consideration.

In the second part, a survey of past investigation on the influence of polypropylene fibres on the strength of concrete was carried out.

In the third part the experimental investigation was carried out on the performance of polypropylene fibres in concrete, cast with local building materials.

In the fourth part general comments, conclusions and recommendations on future work were summarised.

CHAPTER 1:

1.1	INTRODUCTION	1
1.1.1	STEEL FIBRES	3
1.1.2	ASBESTOS FIBRES	3
1.1.3	GLASS FIBRES	4
1.1.4	CERAMIC FIBRES	4
1.1.5	NATURAL VEGETABLE FIBRES	4
1.1.6	POLYMER FIBRES	5
1.2	HISTORICAL BACKROUND	5
1.3	ADVANTAGES OF FIBROUS CONCRETE OVER	8
	CONVENTIONAL CONCRETE	
1.4	PAST RESEARCH REPORTS	13
1.4.1	FLEXURE	15
1.4.2	TOUGHNESS	15
1.4.3	IMPACT RESISTANCE	16
1.4.4	CRACK RESISTANCE	17
1.4.5	DRYING SHRINKAGE	17
1.4.6	CREEP	18
1.4.7	TENSILE	18
1.6	FIBROUS CONCRETE APPLICATIONS	27
1.6.1	BRIDGE DECK OVERLAYS AND CONSTRUCTION	29
1.6.2	HIGHWAY STREET & AIRFIELD PAVEMENT OVERLAYS	29
1.6.3	NEW PAVEMENT CONSTRUCTION	30
1.6.4	MASS CONCRETE MAINTENANCE AND REPAIRS	30
1.6.5	ROCK SCOPE STABILIZATION	31
1.6.6	INDUSTRIAL FLOORS	31
1.6.7	PRECAST CONCRETE APPLICATIONS	31
1.6.8	CONCLUSION	32
1.7	COST CONSIDERATIONS	33
1.8	EFFECT OF FIBRE REINFORCEMENT ON LIGHT-	35
	WEIGHT AGGREGATE CONCRETE	
1.8.1	CRUSHING STRENGTH	35
1.8.2	INDIRECT TENSILE TEST	35
1.8.3	IMPACT RESISTANCE	36

2.1	POLYPROPYLENE FIBRES	37
2.2	HOW POLYPROPYLENE FIBREMESH WORKS	44
2.3	CONSTRUCTION AND APPLICATIONS OF FIBRES	51
2.3.1	IN MARINE CONCRETE	52
2.3.2	CONCRETE REPAIRS	52
2.3.3	WATER RETAINING STRUCTURES	53
2.3.4	FLOOR SCREEDS AND TOPPINGS	53
2.4	CONCLUSION	53
2.4.1	USE FIBREMESH FOR:	53
2.4.2	DON'T USE FIBREMESH FOR:	54

CHAPTER 3:

3.1	INTRODUCTION	57
3.2	MATERIALS	57
3.2.1	CEMENT	57
3.2.2	FINE AGGREGATES	57
3.2.3	COARSE AGGREGATES	58
3.2.4	FIBRES	58
3.2.5	SUPERPLASTISIZER	58
3.2.6	MIX PROPORTIONS	58
3.3	FABRICATION AND CURING	58
3.4	MIXES CAST	60
3.5	OBSERVATIONS	60
3.6	DETERMINATION OF PARTICLES SIZE DISTRIBUTION	63
	BY SIEVING	
3.6.1	FINE AGGREGATES	63
3.6.2	COARSE AGGREGATES	64
3.7	TESTING	67
3.8	FLEXURAL STRENGTH TEST	68
3.8.1	COMPARISON OF PLAIN CONCRETE WITH FIBROUS	69
	CONCRETE	
3.8.2	COMMENTS ON THE RESULTS	70
3.8.3	CONCLUSIONS	71

3.9	IMPACT TEST	82
3.9.1	COMPARISON OF PLAIN CONCRETE WITH FIBROUS	82
~	MIXES	
3.9.2	COMMENTS OF THE RESULTS	83
3.9.3	CONCLUSIONS	83
3.10	DRYING SHRINKAGE TEST	86
3.10.1	RESULTS	86
3.10.2	COMMENTS ON THE RESULTS	87
3.11	COMPRESSIVE STRENGTH TEST	98
3.11.1	RESULTS	98
3.11.2	COMMENTS ON THE RESULTS	103
3.11.3	CONCLUSIONS	104

CHAPTER 4

4.1	GENERAL CONCLUSIONS-RECOMMENDATIONS FOR	115
	FUTURE WORK	
4.1.1	FLEXURE	115
4.1.2	IMPACT RESISTANCE	116
4.1.3	DRYING SHRINKAGE	116
4.1.4	COMPRESSIVE STRENGTH	117
4.2	RECOMMENDATIONS	117
4.3	RECOMMENDED APPLICATIONS	118