DESIGN OF A HIGH SPEED WATER JET CUTTING SYSTEM

Project Report submitted by

TEKKIS GEORGE

In part satisfaction of the conditions for the award of Diploma of Technician Engineer in Mechanical Engineering of the Higher Technical Institute, Cyprus.

<u>Project Supervisor</u>: Dr. L. Lazari

Lecturer Mechanical Engineering, H.T.I

<u>Type of project : Individual</u>

June 1990

	Sound the left state and a state of the stat
HICHER	PROJECT HO
TECHNICAL	1210
INCTITUTE	$I \cdot I \times I$

SUMMARY

The aim of this project was to design a high speed waterjet cutting system.

Firstly a survey of the different water jet cutting techniques was carried out. Then the background theory and principles on which the explosively/pyrotechnically powered water-jets was studied in order to be able to design such a system.

It was decided to design a pyrotechnically powered waterjet cutting system because the information available on similar cutting systems which are powered by jet pumps was very little.

After studying the theory of the above mentioned cutting technique a similar system was designed. In order to design this system previous designs and experience were considered.

When the high speed water-jet gun was ready to be used, a series of experiments was carried out for the purpose of verifying the theory which was previously studied. Some graphs were plotted and comparison of theoretical results to the experimental ones was made. The differences appeared were then discussed and the reasons which caused these differences were investigated.

CONTENTS

	OWLEDGEMENTS	Ι
SUMM	ARY	II
CHAP	TER 1 – INTRODUCTION	1
1.1		1
	1.1.1 Rain erosion on AirCrafts	
	and Missiles	1
	1.1.2 Steam Turbine Blades Erosion	2
	1.1.3 Cavitation Erosion	2
1.2	Engineering Application for High Speed	
	Liquid Jets	3
1.3	Material response to high speed liquid	
	impact	3
	References to Chapter 1	
<u>CHAP</u>	TER 2 - MEASUREMENT OF SURFACE PRESSURE	
	DISTRIBUTION RESULTING FROM WATER	
	JET IMPACT	б
2.1	Introduction	6
	References to Chapter 2	
CHAPTER 3 - OBLIQUE IMPACT OF HIGH SPEED LIQUID		
	JETS ON PLASTIC SOLIDS	11
3.1	Introduction and Theoretical	
	Considerations	11
3.2	Penetration by Jets of Constant Velocity	11
3.3	Penetration by jets of varying velocity	14
3.4	Crater diameter resulting from normal	
	jet of a constant velocity	15
3.5	Jet Velocity distribution	17
3.6	Craters examination	21
3.7	Improvement of jet characteristics by	
	using water soluble additives	23
	References to Chapter 3	

Page

<u>Paqe</u>

<u>CHAP</u>	TER 4 - SPOT WELDING BY HIGH SPEED	
	WATER JET	25
4.1	Introduction	25
4.2	Details of the water jet spot welding	
	process	26
4.3	Effect of inter plates stand-off	
	distance	29
4.4	Effect of jet velocity	36
4.5	Welding with no stand-off distances	36
4.6	5 Theoretical considerations	
	4.6.1 Flyer Plate Deformation due	
	to Jet Impact	36
	4.6.2 Modelling of the water jet	
	spot welding process	38
	References to Chapter 4	
<u>CHAP</u>	TER 5 - CONTINUOUS WATER JET CUTTING	
	TECHNIQUE	53
5.1	Operation of the system	53
5.2	5.2 Applications of the system	
5.3	3 Advantages of the system	
	References to Chapter 5	
CHAPTER 6 - EXPERIMENTAL WORK		60
6.1	Design and Construction of High Speed	
	Water Jet Gun	6
6.2	Operation of High Speed Water Jet Gun	62
6.3	Experimental Work	63
	6.3.1 Penetration tests on lead	
	(varying stand-off)	63
	6.3.2 Penetration tests on lead	
	(varying nozzle diameter)	70
	6.3.3 Penetration on Plasticine	73
6.4 Spot welding tests 75		
References to Chapter 6		

CONCLUSION