

DESIGN OF AN AIR CONDITIONING SYSTEM

S

FOR A CLINIC

by

Simos Nicolaou

Project Report

Submitted to

the Department of Mechanical Engineering

of the Higher Thechnical Institute

Nicosia Cyprus

in partial fulfillment of the requirements

for the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

June 1991

ACKNOWLEDGEMENTS

I wish to express, my sincere thanks, to my project supervisor, Mr. I. Michaelides, Mechanical Engineer, Senior Lecturer of HTI, for his valuable assistance and guidance, in executing, this project

I would like also to sincerely thank, Mr. S. Kalogyrou, Mechanical Engineer, Lab Assistant of HTI, Mr. O. Pavli and Mr. P. Karakanna, Mechanical Contracting Engineers, for their constructive information and guidance, in performing my project.

<u>SUMMARY</u>

The purpose of this project is to design an air conditioning system for a clinic.

The special requirements governing the design of an obstetric clinic made this project more interesting and more instructive. Throughout the work and study valuable knowledge, information and practical approaches to certain problems were obtained and be kept in mind.

The architectural drawing of the plan view of the second floor of a clinic has been supplied. Ambient conditions were taken from the computer program Carrier E20-II and always referring to the weather conditions of Nicosia.

The project is divided into nine chapters, each chapter being fully explained in the table of contents.

Everything included in this project are supported with powerful recommendations from ASHRAE and CARRIER handbooks.

LIST OF CONTENTS

ACKNOWLEDGEMENTS

SUMMARY

INTRODUCTION

CHAPTER	1	Overall heat transfer coefficients	1
	1 0	Introductory	2
	1 1	Thermal parameters	2
	1.1.1	Thermal transmittance	2
	1.1.2	Thermal conductivity	2
	1.1.3	Thermal resistance	3
	1.1.4	Surface conductance	3
	1.2	Calculation of V-value	3
	1.2.1	Outside wall	5
	1.2.2	Inside wall	6
	1.2.3	Floor	7
	1.2.4	Antistatic flooring	8
	1.2.5	Roof	9
	1.2.6	Window	10
	1.3	Note	10
CHAPTER	2	Air conditioning load	11
	2.0	Introductory	12
	2.1	Cooling load	12
	2.1.1	Heat gain	12
	2.1.2	Cooling load	13
	2.1.3	Heat extraction rate	14
	2.2	General heat transfer equation	14
	2.2.1	Heat gain due to direct sunlight on	
		walls, roofs and glass	14
	2.2.2	Heat transmission through internal	
		walls	15
	2.2.3	Heat transmission through floors	15

	2.2.4	Heat transmission through glass	16
	2.2.5	Heat gains from outside air	16
	2.2.6	Load due to occupants	17
	2.2.7	Lights	18
	2.2.8	Motor driven machinery	18
	2.2.9	Other appliances	18
	2.2.10	Miscellaneous heat gains.	18
	2.3	Heating load	19
	2.3.1	Calculation of building heat losses	20
	2.3.2	Transmission losses through ceilings and roofs	20
	2.3.3	Transmission losses through floors	20
	2.3.4	Transmission losses trough walls	
		windows and doors	21
	2.3.5	Heating load due to ventilation	and
		infiltration	21
	2.3.6	Duct losses and air leakage	21
	2.3.7	Allowances	22
CHAPTER	3	Air conditioning systems-Selection	on 23
	3.0	Introductory	24
	3.1	Psychometric processes	24
	3.1.	1 Sensible heating	24
	3.1.	2 Sensible cooling	25
	3.1.	3 Cooling and dehumidification	25
	3.1.	4 Cooling and humidification	26
	3.1.	5 Heating and humidification	26
	3.1.	6 Heating and dehumidification	26
	3.2	Air washers	27
	3.3	Air conditioning systems	28
	3.3.	1 Air handling unit	28
	3.3.	2 Zoned systems	29
	3.3.	3 Fan coil units	29
	3.3.	4 Self contained air conditioners	30
	3.3.	5 Induction system	31

	3.3.6	Dual duct system	31
	3.4	Selection of the air conditioning	32
CHAPTER	4	Load Calculations-Computer program	n 24
	4 0	E20-11	34
	4.0	Carrier's computer program E20-11	
		looda	25
	1 1	Complex grade input form	22
	4.1	Complex space input form	35
	4.1.1	Exterior Wall information	35
	4.1.2	Roof information	36
	4.1.3	Glass information	36
	4.1.4	Shading information	36
	4.1.5	Glass area	37
	4.1.6	Other information	37
	4.1.7	Partitions, ceilings, floors	37
	4.1.8	Infiltration	38
	4.1.9	Slab floor area, perimeter, depth	
		below ground	38
	4.2	Design conditions	39
	4.3	Complex space input forms	42
	4.4	Computer print-out	
CHAPTER	5	Piping system design	70
	5.0	Introduction	71
	5.1	Pipe sizing	71
CHAPTER	6	Air duct system design	74
	6.0	Air duct design	75
	6.1	Introductory	75
	6.1.1	Velocity method	75
	6.1.2	Equal friction method	76
	6.1.3	Static regain method	77
	6.2	Design of supply air duct system	78

	6.3	Friction losses in supply duct	80
	6.4	Return air duct system design	81
	6.5	Friction losses in return air duct	82
CHAPTER	7	Equipment selection	85
	7.1	Selection of chiller	86
	7.2	Selection of boiler	88
	7.3	Selection of burner	89
	7.4	Selection of boiler flue	90
	7.5	Selection of oil tank	91
	7.6	Selection of expansion tank	92
	7.7	Selection of fan coil units	94
	7.8	Selection of air handling unit	96
	7.9	Selection of extractor fan	97
	7.10	Selection of duct material	98
	7.11	Selection of ceiling diffusers,	
		round and back pressure dampers.	99
	7.12	Selection of pump	101
	7.13	Selection of water pipes	103
	7.14	Selection of control instruments.	104
CHAPTER	8	Cost analysis	105
	8.1	Cost analysis of the system	106
CHAPTER	9	Conclusions	108
	9.1	Conclusions	109
REFERENCES			 111
APPENDICES			 112
		Appendices index	113