HIGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING COURSE DIPLOMA PROJECT

NATURAL VENTILATION MEASUREMENTS IN BUILDINGS

THEODOROU PETROS

JUNE 2000

NATURAL VENTILATION MEASUREMENTS IN BUILDINGS

by

Theodorou Petros

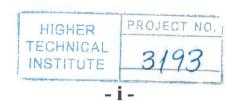
Project Report Submitted to

the Department of Mechanical Engineering

of the Higher Technical Institute

Nicosia Cyprus

In partial fulfilment of the of the requirements


for the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

June 2000

CONTENTS

	PAGE	
SUMMARY	vii	
INTRODUCTION	viii	
PART A: GENERAL ON VENTILATION, MI	ETHODS OF	
VENTILATION AND THEORETICAL		
CALCULATIONS		
A.1 INTRODUCTION	1	
A.2 VENTILATION	1	
A.3 INFILTRATION	2	
A.3.1 Measurement of air infiltration	3	
A.3.2 Calculation of infiltration	4	
A.3.3 Rates of infiltration for design purposes	4	
A.3.4 The action of wind	5	
A.3.5 Infiltration through windows	5	
A.3.6 Internal resistance to air flow	7	
A.3.7 Basic infiltration rates	8	
A.3.8 Room infiltration	8	
A.3.9 Total infiltration	10	
A.3.10 Empirical values for air infiltration	13	
A.3.11 Exposures	14	
A.4 METHODS OF VENTILATION	16	
A.4.1 Mechanical ventilation	16	
A.4.2 Industrial ventilation	19	
A.5 NATURAL VENTILATION	22	
A.5.1 Driving mechanisms	23	

A.5.2 Wind effect (pressure) ventilation	26
A.5.3 Stack effect (pressure) ventilation	33
A.5.4 Combined wind and stack ventilation	40
A.5.5 Natural ventilation openings	43
A.5.6 Minimum ventilation rates	44
A.5.7 Cross flow effectiveness	46
A.5.8 Required flow	46
A.5.9 Flow cost by wind	47
A.5.10 Flow cost by thermal forces	48
A.5.11 Fire ventilation	50
A.6 AIR FLOW	51
A.6.1 Air supply to space	51
A.6.2 Room air movement	51
A.6.3 Condensation	53
A.6.4 Air exchange rates	54
A.6.5 Time constants	55
A.6.6 Outside air fraction	56
A.6.7 Thermal loads	57
A.6.8 Indoor air quality	58
A.6.9 Tracer gas measurements	62
A.6.10 Air change effectiveness	67
A.6.11 Airflow through openings	69
A.6.12 Residential air leakage	71
A.6.13 Residential ventilation	81

PART B: AN APPROACH ON PROPER CONDITIONS FOR NATURAL VENTILATION & BUILDING REQUIREMENTS

B.1 INTRODUCTION	82
B.2 ANALYSIS OF VENTILATION NEEDS	82
B.3 NATURAL VENTILATION REQUIREMENTS	87
B.4 COMFORT VENTILATION	89
B.4.1 Climatic applicability of comfort ventilation	91
B.5 BUILDING DESIGN FOR NATURAL VENTILATION	93
B.5.1 Criteria for evaluating indoor ventilation conditions	95
B.5.2 Effect of specific design factors on natural ventilation	96
B.5.3 Effect on windows	108
B.5.4 Shading of windows	116
B.5.5 Color of envelope	119
B.5.6 Climatic impact of plants around buildings	120
B.6 NOCTURNAL VENTILATIVE COOLING	121
B.6.1 Climatic applicability of nocturnal ventilative cooling	122
B.7 RADIANT COOLING	125
B.8 EVAPORATIVE COOLING	125
B.8.1 Applicability of evaporative cooling	126
B.9 EXAMPLES OF BUILDINGS	
USING NATURAL VENTILATION	127
B.9.1 The Iranian wind Towers	127
B.9.2 The Villas of the Costozza (Italy)	132

PART C: EXPERIMENTAL PROCEDURE & RESULTS IN AN H.T.I CLASSROOM

C.1 INTRODUCTION	135
C.2 PRESENTATION OF THE EXPERIMENT	135
C.3 PRESENTATION OF TESTS	138
C.4 CALCULATIONS OF AVERAGE	
AIR CHANGES PER HOUR	143
C.5 GENERAL COMMENTS ON THE EXPERIMENT	143
CONCLUSIONS	147
REFERENCES	148
APPENDICES	

ACKNOWLEDGMENTS

I would like to dedicate this project to my parents for supporting and guiding me during these years of studying in H.T.I So I take this opportunity, by accomplished this project to express my great thanks to them.

THANK YOU!!!

SUMMARY

The purpose of this project was to investigate the Natural ventilation in buildings and its application and appreciate importance. Among others, a more important purpose was to indicate that mechanical ventilation is not always the best solution. So someone who is interested to achieve and maintain its resident by natural ways, this project would be very helpful to him. Firstly this project starts with the detailed approach of the natural ventilation with C.I.B.S and ASHRAE standards. Thus, the effects of wind pressure airflow, infiltration e.t.c. are discussed in PartA. Then by studying some references on proper design and construction of residential structures and moreover the suitable handling of window types and sizes and also the effect of plants around the resident. Furthermore some typical examples of Natural ventilation in buildings abroad are presented which provide natural cooling. These techniques were discussed detailed so someone who is interested may adopt them and used them.

Finally an effort was made to study behavior of wind in Natural ventilation in Cyprus in a form of an experiment in H.T.I premises, showing this effect and also air change effectiveness in a classroom. Ending, some reference in the form of tables and maps showing the wind direction and effect among the four cardinal directions (south, north, east, and west) for Cyprus.

INTRODUCTION

Is well known that before the inventions of mechanical equipments and machinery, human beings, tried to simplify as much as it could its way of living.

So, among other factors concerning humanity, another one, and the proper conditions of supply fresh air into buildings was concern. In other words, the term "Natural Ventilation" describes completely that attempt.

So, in this project research Natural Ventilation will be analysed in detailed.

By choosing to deal with the whole factors, information's and background, concerning Natural ventilation, such as: wind and stack pressure, airflow, infiltration rates, air change effectiveness and theoretical calculations its more easier to get familiarized with the whole idea and utilization in Natural Ventilation.

In addition to that some suggestions and comments dealt with residents construction, would be very helpful. These are: the type and orientation of buildings, the type and size of windows, the effect of shading of windows and plants around the buildings, are among other great factors to be concerned in order to achieve proper Natural Ventilation conditions. Also some applications of Natural Ventilation in structures abroad e.g. (Iran, Italy), are discussed in detailed. Finally an experiment held on an H.T.I. classroom, in order to visualize the importance of the rate of airflow, as well of course, air changes per hour significance.

By performing this simple experiment an effort made to demonstrate not only how air changes per hour are measured in a classroom for example, but also the more important was to compare the experimental results with standard results measured and listed in tables, by expert people in the field of Natural ventilation conditions. Certainly the difference of course, in knowledge cannot reach the degree of knowledge and experience of those expert people, but this attempt was performed in order to realize that air changes per hour in any living space plays vital role for human beings.

Ending some reference tables and figures concerning Cyprus

Ending some reference tables and figures concerning Cyprus conditions with more emphasis in Nicosia and Athalassa areas were the experiment was performed.