Design of a Travelling Crane

Project report submitted by

Ioannou Yiannakis

In part satisfaction of the Conditions for the award of Diploma of Technical Engineer in Mechanical Engineering of the Higher Technical Institute, Cyprus.

Project Supervisor:

Mr. N. Papanastasiou Lectures in Mechanical Engineering, HTI

Type of project :

Individual

June 1994

ACKNOWLEDGEMENTS

I would like to express my thanks and appreciations to Mr. Papanastasiou, Lecturer at the Higher Technical Institute for his assistance and guidance throughout the design procedure.

I would also thank Mr. Koumidi Yiannaki for the provision of useful information relevant to the subject of the diploma project and Mr Argiridis Michael.

Finally I would like to express my gratitude to Froso who has typed the diploma project.

Ioannou Yiannakis 3rd Year Student in Mechanical Engineering, H.T.I. 93/1994

SUMMARY

The design of a Travelling crane should be conform to FEM Standards in order to construct reliable designs.

FEM which means Federation of European Hoist Manufacturers is a standard code for the design of cranes.

Also the designer should follows some design considerations like strength, reliability, corrosion, cost safety, life and others in order to design the suitable crane.

The material to be selected which has to do with the strength, depends upon the choice. The choice should be economical as possible but mainly available to handle two times the required weight.

The above design consideration deals with the safety of the design because always there are people which don't follow the working weight and apply more weight to finish faster the job.

The following design of a Travelling cane which handles up to 0.5tonnes, travels 4m and raises and lowers weights up to 4m is flexible because can be dismantled and reassembled in different work places due to its weight. Can be controlled as an overhead crane with a control hanging from the trolley.

Calculations for each member selected and necessary welds at th necessary spots and also calculation and selection the screws to connect the main members.

Degree of safety is high because the designer should prevent the trolley falling from the rail, with buffers and also emergency switches are placed to stop the trolley at the correct distance limits.

Also the operator should control the crane away from the crane because the travelling speed of the trolley will oscillate the handling weight and this might wound him.

CONTENTS

ABSTRACT

SUMMARY

CHAPTER 1: Introduction to the Cranes.	1
1.1- Above - Surface Handling, Monorails	4
1.2- Overhead Travelling Cranes	4
1.3- Gantry Cranes	4
1.4- Rotary Cranes and Derricks	4
1.5- Locomotive Cranes	5
1.6- Tower Cranes	5
CHAPTER 2: Basis Solution, Technical Specifications.	
2:1- Subject of the Supply	6
2:2- Performance and characteristics	6
2:3- Dimensions (main)	6
2:4- Speeds	6
2:4:1- Travelling Speed of trolley	6
2:4:2- Travelling Speed of wire ropes (hook)	6
CHAPTER 3: Design Criteria	
3:1- General design	6
3:2- Materials	7
CHAPTER 4: Design Calculations of I beam and selection	
4:1- Design Calculations of I beam	9
4:1:1- Shear force and bending Moment diagrams	9
4:2:2- Calculation of stresses and	10
- Selection of I beam	10
- Second moment of Area	10
- Maximum bending Stress	10
- Average shear Stress	10
- Safety factor	10
- Weight of I beam	11
4:1:3- Checking for safety	11
- Maximum deflection when loaded	11

Page

- Using parallel axis theorem	14
- Tresca theorem	14
CHAPTER 5: Design Calculations of Plates and Selection	
5:1- Design calculations of plates	15
5:1:1- Shear force and bending moment diagrams	17
5:1:2- Calculation of stresses and	18
selection of plates	18
- Cross sectional area	18
- Second moment of area	18
- Bending Stress	18
- Shear Stress	18
- Safety factor	18
- Stress Distribution	19
- Weight of plate	19
5:1:3- Calculation of the weld for connection	20
of Ibeam with the plate	20
- Cross sectional area	20
- Unit moment of inertia	20
- Shear Stress	20
- Total moment of inertia	20
- Bending Stress	21
- Maximum Shear Stress	21
- Shear yield Strength	21
- Safety factor	21
CHAPTER 6: Selection of Crane hook and calculations	22
6:1- Selection of crane hook and necessary	
calculations	22
6:1:1- Distribution of stresses across	
section A.A.	22
6:1:2- Chemical composition	23
6:1:3- Stress distribution equation	23
6:1:4- Critical Stresses	24
6:1:5- Stress distribution across A.A.	25
- Bending Stress	25
- Direct load stress	25
- Total stress	25

CHAPTER 7: Choosing wire Rope

7:1- Choosing rope	26
 principal points to consider 	26
7:1:1- Physical performance of wire Ropes	26
7:2- Load on the ropes	27
- Determination of the load on the wire	
rope	27
- Safety factor	27
CHAPTER 8: Selection of the Bolts, Washers	
Nuts, for the connection of the suppor	't
with ideam.	
8:1- Selection of the Screw fasteners	29
- Design of Screw fasteners	29
CHAPTER 9: Choosing of Trolley	
9:1- Design calculations for plotting shear	
force and bending moment diagrams	30
9:2- Selection of the Trolley	32
9:3- Trolley travel specifications	33
- Trolley weight	33
- Load on the ropes	33
- Trolley travel speed	33
9:4- Simple Diagram of the trolley travel	33
9:5- Description and Technical Characteristics	33
of the hoist	34
- Hoist description	34
- Main comparents and technical	
characteristics	34
- Design of the Trolley	
- Design of the section of the	
trolley, moto with the drum	34
CHAPTER 10: Design of the Supports	
10:1- Calculations and design of the supports	36
- Estimation of angle (Θ)	36
- Estimation of the forces	36
- Simple sketch of the support indicating	
the angles and distances	39

- Results of the forces and simple sketch	
of the supports indicating the final	
forces as calculated for each member	40
10.2- Selection and calculations of the	
members Areas.	41
10.3- Connection of the members with high	
strength bolts	44
10.4- Flimination of the oscillations of the	
10:4- Elimination of the oborriations of the	53
mole structure	
CHAPTER 11: Design and Selection of buffers	
11:1- Calculations for estimating the force on	
the buffers	58
11:2- Calculations for plotting the shear force	
and Bending Moment Diagrams	59
11:3- Design and selection of the supports of	
the buffers	60
11.4- Calculation of the welds of the	
buffers supports	63
waller off.	
CHAPTER 12: Design of the bottom support connection	
12:1- Calculation and selection of bottom support	
platform (plate)	65
12:2- Design calculations of the welds	66
12:3- PLACEMENT OF LIMIT SWITCHES	68
CHAPTER 13: OPERATIONAL INFORMATIONS	
13:1- Operational Irregularities due to	
incorrect installation or use	70
13:2- Repairs	71
13:3- Information about the supporting connections	71
- Information about the joints	71
- Deflection	71
- End stops	71
13:4- Fundamental rules that should be respected	
during the use of the hoist.	71