DESIGN OF A SOLAR HOT WATER SUPPLY FOR A BLOCK OF FLATS

Project Report Submitted by:

VARNAVA STAVROS

In Part Satisfaction Of the Award of Diploma of Technician Engineer In

Mechanical Engineering
Of The
Higher Technical Institute
Nicosia
Cyprus
June 1990

Project Supervisor

Mr. I.M. Michaelides
(Senior Lecturer in Mechanical
Engineering at the H.T.I.)

Type of Project: Individual:
Group:

DESIGN OF A SOLAR HOT WATER SUPPLY FOR A BLOCK OF FLATS

Written by: Varnava Stavros

Summary

The objective of this project was to design a solar hot water supply system for a Block of flats located in Nicosia, Cyprus.

Firstly the daily hot water requirements of the building were calculated and the heat required for heating the water was estimated.

Secondly two types of solar collectors, the flat plate collectors and the concentrating collectors were examined in detail and in decision making the flat plate collectors were found the best choice. After the determination of the collector tilt angle and the collector efficiency the calculation of the optimum Solar Collector area was followed through a rough cost estimation taking into consideration the solar radiation and sunshine duration in Cyprus.

Thirdly the various methods and techniques currently used for the collection and storage of solar energy for water heating were studied in detail. In decision making the best solution was found to be a hot water closed system with one storage tank, an external heat exchanger and a boiler as an auxiliary heat source.

performed. This includes the determination of the size and positioning of the solar collectors on the roof, the size of external heat exchanger and all the other equipment and accessories and controls involved in the selected system.

Fively the pipe sizing and pumps selection of the collection and distribution system was carried out. Detailed drawings were prepared, illustrating the system layout and components.

Finally, a cost estimation of the selected solar hot water system was carried on.

To conclude with, it should be stated that Solar energy is one of those energy sources which can be fully utilized especially in countries of high daily solar radiation such as our country Cyprus.

CONTENTS

		Page
1.	Introduction	1
2.	Daily hot water requirements of the	
	building	2
3.	Heat Requirements for the Water Heating	4
4.	Solar Energy Collectors	6
5.	Collector Till Angle	9
6.	Calculation of the collector efficiency	10
7.	Calculation of the optimum solar	
	collector Area through a rough cost	
	estimation	11
8.	Methods and techniques currently used for the	
	collection and storage of solar energy for	
	water heating	19
9.	Selection of the Solar System to be used	47
10.	Collector Positioning on the roof	50
11.	Selection of the external heat exchanger	51
12.	Selection of the storage tank	52
13.	Selection of the auxiliary source	53
14.	Pipe sizing and pumps selection	56
15.	Selection of the expansion tanks	68
16.	Selection of the Air Separator	70
17.	Controls	71
18.	Insulations	72
19.	Cost Estimation	73
20.	Conclusion	77
21	**Elerences	78
22.	Appendices	79