REINFORCEMENT DETAILS IN CYPRUS

Project Report Submitted by

ELENI G. KYRIAKOY NIKOLETTA KYTHREOTI

in part satisfaction of the award of
Diploma of Technician Engineer in
Civil Engineering of the Higher
Technical Institute, Cyprus

Project Supervisor:

D. Andreou

External Assessor:

G. Ioannou

Type of Project:

Individual

Group

...X...

JUNE , 1997

HIGHER PROJECT

SUMMARY

The report indicates ways in which detailing can be standardized and simplified. It also covers the detailing of reinforced concrete in the building and civil engineering industries in Cyprus.

One of the simplified methods which are used in Cyprus is been produced into a model.

CONTENTS

	<u>Page</u>
ACKNOWLEDGEMENTS	I
CONTENTS	II
LIST OF FIGURES	IV
SUMMARY	V
INTRODUCTION	VI
CHAPTER 1: FOUNDATION 1.1 INTRODUCTION 1.2 ISOLATED PAD FOOTING 1.2.1 TYPICAL DETAIL OF A PAD	1 2 4
FOUNDATION	
1.3 COMBINED FOOTING 1.3.1 TYPICAL DETAIL OF A COMBINED FOUNDATION	5 6
CUADTED 2. COLUMNS	
CHAPTER 2: COLUMNS	^
2.1 INTRODUCTION	8
2.2 TYPICAL DETAIL OF A COLUMN	10
2.3 LINK ARRANGEMENTS IN COLUMNS	12
CHAPTER 3: BEAMS	
3.1 INTRODUCTION	13
3.2 TYPICAL DETAIL OF BEAMS	14
3.2.1 SIMPLY SUPPORTED BEAM	14
3.2.2 CONTINUOUS BEAM	16
3.2.3 CANTILEVER BEAM	17
3.3 CURTAILMENT OF BARS	18
3.4 STIRRUP ARRANGEMENTS IN BEAMS	25
CHAPTER 4: SLABS	
4.1 INTRODUCTION	27
4.2 ONE-WAY SLABS	28
4.2.1 CURTAILMENT RULES ACCORDING	29
TO BS 8110	23
4.3 TWO -WAY SLABS	32
4.3.1 TYPICAL TORSION REINFORCEMENT	33
AT THE CORNER	33

REINF. FOR CONTINUOUS SPAN. CHAPTER 5: MODEL	34
5.1 COMMENTS ON MODEL 5.2 SKETCHES AND PICTURES ON MODEL 5.3 3-D DRAWINGS	35 36 40
APPENDIX	55-64
REFERENCES	65

LIST OF FIGURES.

		PAGE
Fig.1	Ground pressure taken by an isolated pad footing.	2
Fig.2	Section of an isolated pad footing.	4
Fig.3	Plan of an isolated pad footing	4
Fig.4	Typical details of a combined	
_	foundation	6
Fig.5	Typical section of a rectangular	
	footing	7
Fig.6	Typical detail of a column	10
Fig.7	Link arrangements in columns	12
Fig.8	Simply supported beam using	14
	continuous bars for top and bottom	
Fig.9	Simply supported beam using L-bars for end anchorage	15
Fig.10	Simply supported beam using U-bars	15
Fig.11	Continuous beam where top and bottom	16
J	span bars are cut short of the	
	column	
Fig.12	Continuous beam where continuous	16
	bars are used	
Fig.13	Short Cantilever	17
Fig.14	Long Cantilever	17
Fig.15	Curtailment of reinforcement	20
Fig.16	Staggering the curtailment of bars	21
Fig.17	Alternative the anchorage length at	22
	a simple support	
Fig.18	Simplified rules for curtailment of	23
	bars in beams	
Fig.19	Type of stirrups	26
Fig.20	Simple end support	29
Fig.21	Continuous internal support	30
Fig.22	Anchorage	31
Fig.23	Anticrack	31
Fig.24	Yield lines patterns	32
Fig.25	Typical torsion reinforcement at the	33
	corner	_
Fig.26	Typical torsion and anticrack	34
	reinforcement for continuous slab	