COLD FORMING OF WORK-HARDENING METALS

by

Savvas Savvas

Project Report

Submitted to

the Department of Mechanical Engineering

of the Higher Technical Institute

Nicosia Cyprus

in partial fulfilment of requirements

for the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

June 1993

project.93 (33)

HUGHER	PROJECT NO
TECHNICAL	9100
INSTITUTE	2144

<u>ACKNOWLEDGEMENTS</u>

I would like to express my thanks and appreciation for the help and guidance given to me throughout this project by my supervisor Mr G. Katodrides, my lecturers Mr Lazaris and Mr Neocleous.

ABSTRACT

This project report is divided into three parts.

The first part includes a study of work-hardening expression, and the several methods of cold forming of metals, such as extrusion, deep-drawing, wiredrawing, shearing and blanking.

The second part consist of the experimental work for the determination of the work-hardening expression of five specimens, tables of true stress and strain, graphs and finally the evaluation.

The third part includes the calculations needed for the design of the machine and several figures.

Abstract

Introduction

PART A		
1.1	Introduction - Work hardening	1
1.1.1	Uniaxial Tensile test	2–5
1.1.2	Tensile Strength	5
1.1.3	Yield Strength	6-7
1.1.4	Percentage elongation	8
1.1.5	Reduction in Area	8–9
12	True-Stress-True-Strain Curve	10
1.2.1	Comparison on engineering and true stress-stair Curves	11–12
1.2.2	True stress at max Load	12
1.2.3	True stress – Strain at Fracture	12
1.3	Work-hardening expression	13
13.1	Determination of the K and n Constants	13–15
1.3.2	Checking if the value of K and n are correct	15-16
1.4	Introduction on Cold Forming of Metals	17–19
1.4.1	Plastic Forming are performed for two reasons	19
1.4.2	Effect of temperature on forming processes	19–21
<u>1.5 Extr</u>	usion	21–23
1.5.1	Variables in Extrusion	23
1.5.2	The punch load variation with punch travel	23-25
1.5.3	The overall friction resistance	25
1.5.4	Deformation in extrusion	25-26
1.5.5	Extrusion under ideal conditions	27–28
<u>1.6</u>	Shearing and Blanking	29-31
1.6.1	Force required during shearing	32-37
<u>1.7</u>	Bending	38–39
1.7.1	Force required for bending	39
1,7.2	Sheet Bend ability	40

1.7.3	Spring back	41
<u>1.8</u>	Deep drawing	42
1.8.1	Mechanism of deep drawing	43–46
1.8.2	Blank- Development Calculation	46-47
1.8.3	Force required for drawing	47–48
1.8.4	Drawn ability	48–50
<u>19</u>	Wire drawing Introduction	51
1.9.1	Wire drawing	52
1.9.2	Force in Wire drawing	55-56
1.9.3	Analysis of wire drawing	57-59
PART B		
2.0	Introduction	60
2.1	Experiment	61-65
2.2.1	Plain Carbon Steel Code A	66-68
2.3.1	Plain Carbon Steel Code C	69-71
2.4.1	Al-alloy annealed at 380°C Code R	72–77
2.5.1	High Conductivity Copper (hard drain) Code W	78-80
2.6.1	High Conductivity Copper (annealed at 550°C) Code W	81–83
2.7.1	70/30 Brass code X (as drawn)	84-86
2.8.1	70/30 Brass-Annealed at 550°C Code X	87-90
PART C		
3.1	Calculations of the force for the reduction of metal Code R $% \left({{\left({{{\left({{K_{{\rm{T}}}} \right)}} \right)}} \right)$	91-94
3.2	Design for the diameter of the cones	94-100
3.3	Design of the height of the cones	101-102
3.4	To determine the total power required to turn the Series of	
	cones	102-103
3.4.a.	Design of the Shaft A	103-104
3.4.b	Design of the Shaft B	104-105
3.5	Design for the veld in Shaft A & B	105-106
3.6	Calculation of weight of cone	106-108
3.7	Selection of a tapered Roller bearing	108-109
3.8	Calculation of the rotation of the main shaft	109

3.9	Design of main axis	110
3.10	Selection of bevel Gears	110
3.11	Design of shear on the key in the main shaft	111
3.12	Selection of bearing	112
3.13	Design for the thickness of the vertical side walls of base	112
3.14	Selection of Motor	113
3.15	Selection of Controller	113
3.16	Design of the motor base	114–116
3.17	Design for bending in the weld	116–118
3.18	Design for the thickness of the Die holder	118–119
3.19	Design for the diameter of the die holder	119–122
3.20	Design for the weld between the two Die holders	123
3.21	Design for the weld of the Die holder and the Bearing Support	124
3.22	Estimation of temperature rise	125
3.23	Estimation of diameter increase of the Dies	125-126
3.24	Selection of Coolant liquid	126
3.25	Design for Corrosion	126
4.1	Cost Analysis	126-127
Appendi	xes	
Technicc	Il Drawings	

-

·