HIGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING COURSE DIPLOMA PROJECT

DESIGN OF A CENTRAL HEATING AND HOT WATER SERVICES FOR A BUILDING

M/901

KYRIAKOS KYRILLOU

JUNE 2000

HIGHER TECHNICAL INSTITUTE COURSE IN MECHANICAL ENGINEERING

DIPLOMA PROJECT

DESIGN OF A CENTRAL HEATING AND HOT WATER SERVICES FOR A BUILDING

M/901

KYRIAKOS KYRILLOU

7 JUNE 2000

CENTRAL HEATING WITH HOT WATER SERVICES

Project Number : M/901

Project Report Submitted By : Kyriako Kyrillou

In partial fulfillment of the requirements for award of the Diploma of Mechanical Engineering in Mechanical Engineering Department of Higher Technical Institute, Nicosia - Cyprus June 2000

1

Project Supervisor : Mr. Theodoros Simeou Lecturer at Higher Technical Institute Nicosia, Cyprus

7 JUNE 2000

DEDICATED TO THE MEMORY OF MY FRIEND PANAYIOTI PANAYIOTOU

,

CONTENTS

INTRODUCTION		1
SUMMARY		2
ACNOWLEDG	EMENT	3
CHAPTER 1: 1.1 1.2 1.3 1.4 1.4.a 1.4.b 1.4.c 1.4.d 1.4.c 1.4.d 1.4.c 1.4.d 1.4.c 1.4.d 1.4.c 1.4.d 1.4.c 1.4.d 1.4.c 1.4.f 1.5 1.6 1.7 1.7.1 1.7.2 1.8 1.9 1.10 CHAPTER 2:	ESTIMATION OF HEAT LOSSES Introduction Fabric or structure losses Infiltration and ventilation losses Definitions of various terms used internal Properties of building material Thermal conductivity Thermal conductance Thermal resistivity Thermal resistance Surface conductance Surface resistance U-value estimation Table for u-values Design conditions Outside design conditions Winter insite conditions Winter insite conditions Calculations of the heating loads Sample calculations of the heat losses in a room Tables of heat losses of each room	4 5 5 6 6 6 6 6 6 6 6 6 6 6 7 9 9 9 10 10 10 11 12 13
2.1 2.2 2.3 2.4 2.5 2.5.1 2.5.2 2.5.3 2.5.4 2.5.5 2.6	Introduction Selection of the heating method Selection of the method of hot water circuiton Selection of the type of circuit Radiator selection Design water temperature Conversion factor Procedure for selection the radiatos Specimen selection of a radiator Tables of the selected radiators Pipe sizing	14 14 16 17 20 21 21 23 24 24 24 25

2.6.1	Procedure for sizing pipework	26
2.6.2	Specimen calculation and selection of pipe diameter	26

CHAPTER 3:HOT WATER SUPPLY

3.1	Introduction	28
3.2	Local water heaters	28
3.2.1	Instant heater	28
3.2.2	Storage water heater	29
3.2.3	Instantaneous gas-fired water heaters	30
3.3	Central hot water systems	31
3.3.1	Direct system	31
3.3.2	Indirect central system	33
3.4	Determination of storage allowed	34
3.5	Determination of boiler power	36
3.6	Pipe sizing	36 •

CHAPTER 4:EQUIPMENT SIZING

4.1	Introduction	40
4.2	Boiler sizing	40
4.3	Burner sizing	41
4.4	Expansion tanks sizing	42
4.5	Chimney sizing	46
4.6	Pumps sizing	48
4.6.1	Pump sizing procedure	49
4.6.2	Pump sizing	54
4.8.1	Fuel oil tank sizing	54
4.9	Valves	56

CHAPTER 5:EQUIPMENT SELECTION

5.1	Selection of the boiler	57
5.2	Selection of the burner	57
5.3	Sizing of fuel oil tank	57
5.4	Selection of the storage calorifier	58
5.5	Selection of expansion tank	58
5.6	Pump selection	

5.6.1	For central heating	58
5.6.2	for hot water supply	59

CHAPTER 6: PREVENTIVE MAINTENANCE SCHEME

6.1	Introduction	60
6.2	Boiler maintenance	61
6.3	Burner maintenance	61
6.4	Pumps maintenance	62

CHAPTER 7 COST ANALYSIS

7.1	Introduction	64
7.2	Cost analysis	64

CONCLUSIONS

66 ,

REFERENCES

APPENDICES

DRAWING

INTRODUCTION

The purpose of a heating system is to produce and maintain comfortable conditions in the space concerned when the outside temperature has dropped below the comfort level. Obviously the lower the outside temperature, the greater is the capacity of the heating plant required and the more prolonged the severe weather, the greater the energy consumption (fuel, electricity) will be.

Calculations for heat requirements are based upon the difference between design external air temperature and design internal air temperature. The design external air temperature was obtained from records of Meteorological Service for weather conditions of Nicosia, while recommended values for design internal air temperature were taken from CIBS-GUIDE.

Space heating can be achieved either by individual heating units separately for each room (Local Heating) or by central systems with common heat source (Central Heating System).

Local heating can be achieved by appliances like stoves, open fireplaces, gas-fires, electric heaters, electric convectors, etc.

During the paste thirty years, however, the development and improvement of Central Heating systems have enabled the installation of them for domestic use. In these installations fuel is converted to heat in a central plant and the heat is distributed round the building to heat-emitting devices by a heat transfer medium. Water was found to be the most efficient medium for heat transfer and yet the cheapest material (except from air); it is an obvious choice for the purpose, and it is in fact the material most widely used.

The distribution system will consist basically a boiler for the production of heat from fuel, a system of pipes holding the heating medium, leading to heat emitters in the various rooms of the building and subsequently returning to the boiler. Finally a circulating pump will be employed in the system, to be used as a motive power to force the heating medium round the circuit.

SUMMARY

The aim of this project is to design a space central heating and hot water supply system for a hospital located in Pahna.

The whole content of the project is divided into 7 chapters. The first 4 chapters contain all the design procedure, together with the selection of the various equipment to be employed in the system.

Architectural drawings for the building have been supplied to me and ambient conditions, always referring to the whether conditions of Pahna, the indoor and ventilation requirements being selected with precise investigation.

The next chapter contains specifications for equipment and the 6th a maintenance scheme for the major parts of the system.

The last chapter includes a cost-analysis of the whole system.

I believe that the space central heating system, together with the Hot Water Supply for a hospital as it was in my case, is complicated enough. The limited available time for the project, has made my work more difficult.

Inspite the above facts I believe that this project is not faultless and I nope in my next approach in the field of mechanical engineering, I will be more precise and sophisticated.

2

Acknowledgements

I would like to express my gratitude to my project supervisor Mr. Akis Symeou for his valuable help and guidance in the preparation and completion of this project.

I would like also to express my sincere thanks to Mr. Gregoriou Michali Mechanical engineers of Hiteco and Panicos Ciannaki for their constructive information and guidance in performing this project.

0