DEVELOPMENT OF A COMPUTER AIDED TELECOMMUNICATIONS LABORATORY DEMONSTRATION SYSTEM

Project report submitted by CONSTANTINOS KASSIANIDES

to

The department of Electrical Engineering of the Higher Technical Institude

Nicosia,Cyprus

in partial fulfilment of the requirements

for the diploma of

TECHNICIAN ENGINEER

IN

.

ELECTRICAL ENGINEERING

JUNE 1994

HIGHER TECHNICAL INSTITUTE NICOSIA-CYPRUS

ELECTRICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

1993/1994

Project Number: E.898

<u>Title</u>:

"Development of a Computer Aided Telecommunications Laboratory Demonstation System"

<u>Objectives</u>:

- 1. To study different types of Computer Aided Telecommunications Laboratory Demonstration Systems.
- To select, design, develop, construct, test and calibrate a Computer Aided Telecommunications Laboratory Demonstration System.
- 3. To write all necessary software.
- To write and demonstrate different experiments using the System.

Terms and conditions

1. The following items are supplied:

(a) Analogue/Digital I/O card

(b) Suitable software package

Student : Mr C Kassianides

Supervisor : Mr D Lambrianides

External Assessor :

DL/DP dl1(5)

DEVELOPMENT OF A COMPUTER AIDED TELECOMMUNICATIONS LABORATORY DEMONSTRATION SYSTEM

SUMMARY

This project is intended to lay the foundations for the development of a computer aided talecommunication system on the IBM PC. The software of the project forced the user to utilise the analog to digital converter of a commercially available multifanction card. This is the PCL711 from Advantech company ltd.

The basic thing of this project is to demostrate how with the software, which is using the user addresses of the card to process analog signals. These signals are taken, in this case, from the circuits of AM modulator and low pass filter. These circuits are developed for the purposes of this project.

Unfortunatelly not all objectives of the project carried out because of my inexperience in programming with Turbo Pascal and it took me a lot of time to get familiar with it. Also because of the limited time the laboratory where available, and because of the complexity and quantity of work i had to do, the software to drive the hole system did not work properly.

Despide this I got familiar in programming to drive experimental hardware that is interfaced on the IBM PC, as well as with the design and construction of hardware.

<u>CONTENTS</u>

ACKNOWI EDGMENTS	PAGE
SUMMARY	
INTRODUCTION	
INTRODUCTION	
CHAPTER 1: COMPUTER AIDED TELECOMMUNICATION	
SYSTEMS	1 - 3
1.1. WHAT IS A COMPUTER AIDED TELECOMMUNICATION	
SYSTEM	1
1.2. TYPES OF COMPUTER AIDED TELECOMMUNICATION	
SYSTEM	1
1.2.1 SINGLE CHANNEL SYSTEMS	2
1.2.2. MULTI - CHANNEL SYSTEMS	2
1.3. CONSTRUCTING A COMPUTER AIDED	
TELECOMMUNICATIONS SYSTEM	3
CHAPTER 2: SAMPLING	4 - 11
2.1. SAMPLING - THE BASICS	4
2.2. SAMPLING THEOREM	4
2.3. ALIASING	7
2.4. ANALOG TO DIGITAL CONVERSION	7
2.5. BASIC INPUT/OUTPUT RELATIONSHIP	7
2.6. CONVERTER ERRORS	8
2.7. CONVERTER RESOLUTION	10
2.8. CONVERTER ACCURACY	10
2.9 CONVERTER INPUTS AND OUTPUTS	10
2.9.1 ANALOG INPUT SIGNAL	10
2.9.2 DIGITAL OUTPUT SIGNAL	10
2.10. CONVERTER THROUGHPUT RATE	10

CHAPTER 3: THE PCL - 711 MULTILAB CARD	12 - 17
3.1. INTRODUCTION OF THE PCL-711 PC-	
MULTILAB CARD	12
3.2. KEY FEATURES OF PCL - 711	12
3.3. SPECIFICATIONS	12
3.3.1. ANALOG INPUT STAGE (A/D CONVERTER)	12
3.3.2. GENERAL SPECIFICATIONS	13
3.4. EXPANSION CAPABILITIES	14
3.5. BASE ADDRESS SELECTION	15
3.6 CONNECTOR PIN ASSIGNMENT	15
3.7. THE CARD'S INSTALLATION	16
3.8. ANALOG INPUT SIGNAL CONNECTION	17
CHAPTER 4: DEVELOPMENT OF HARDWARE	18 - 22
4.1. GENERAL	18
4.2. FILTER	18
4.2.1. CIRCUIT OF THE FILTER	18
4.3. MODULATOR	19
4.3.1. CIRCUIT OF AM MODULATOR	20
CHAPTER 5: THE SOFTWARE	23 - 28
5.1. GENERAL FOR THE SOFTWARE	23
5.2. OBJECTIVES	23
5.3. THE PROGRAMMING LANGUAGE	23
5.4. THE PCL - 711 REGISTER FORMAT	24
5.4.1. A/D DATA REGISTERS	25
5.4.2. MUX SCAN REGISTER	25
5.5. EXECUTION OF AN A/D CONVERSION &	
THE DRIVER ROUTINE	26
5.6. THE SAMPLING PROCEDURE	27
5.6.1. SINGLE SHOOT SAMPLING	28
5.7 JOINING	28

.

CHAPTER 6: INFORMATION FOR THE USER	29
6.1. HARDWARE REQUIREMENTS	29
6.2. STARTING THE PROGRAM	29
6.3. OPTION 1: THE SAMPLE	30
6.4 OPTION 2: PLOT	30

APPENDICES