HIGHER TECHNICAL INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DESIGN AND PROGRAMMING OF A CNULL HE

by

PAPHI [18 CHR^{*} (M/806)

JUNE 19 ?

DESIGN AND PROGRAMMING

OF A CNC LATHE

by

Paphitis Christos

Project Report

Submitted to

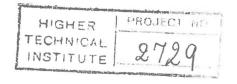
the Department of Mechanical Engineering

of the Higher Technical Institute

Nicosia - Cyprus

in partial fulfillment of the requirements

for the diploma of


TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

Project Supervisor: Dr L. G. Lazari

June 1997

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING COURSE

DIPLOMA PROJECT

DESIGN AND PROGRAMMING

\mathbf{OF}

A CNC LATHE

*

M/806 PAPHITIS CHRISTOS

JUNE 1997

| PROJECT NO HIGHER TECHNICAL INSTITUTE 2729

TABLE OF CONTENTS

Page

CHAPTER 1:

1.1.	NUMERICAL CONTROL	1
	1.1.1. What is Numerical Control	1
	1.1.2. What is the History of NC	3
	1.1.3. How Does it Work?	10
	1.1.4. Advantages of NC	12
	1.1.5. Disadvantages of NC	14
	1.1.6. Future Trends	15
	1.1.7. Applications of Numerical Control	16
1.2.	COMPUTERISED NUMERICAL CONTROL (CNC)	17
	1.2.1. Comparizon of NC with CNC	17
	1.2.2. Advantages of CNC	19
1.3.	DIRECT NUMERICAL CONTROL (DNC)	20
	1.3.1. What is DNC and how it works?	20
	1.3.2. Advantages of DNC	21
1.4.	ADAPTIVE CONTROL MACHINING	22
	1.4.1. General Information	22
	1.4.2. Benefits of Adaptive Control Machining	23
1.5.	FLEXIBLE MANUFACTURING SYSTEMS (FMS)	26
	1.5.1. Introduction	26

i

1.5.2.	The Three Main Classes of MS	29
1.5.3.	Batch Production and the Need of NC	32
1.5.4.	Group Technology	37
1.5.5.	Numerical Control Machining Center	39
1.5.6.	How the CNC is Used in FMS and Generally	
	in the Batch Production	47
1.5.7.	The Use of NC in Different FMS	49
1.5.8.	The Advantages of FMS	60
1.5.9.	Difficulties With FMS	61
1.5.10	. Factory of the Future	63

CHAPTER 2:

2.	EMCO	COMPACT 5 CNC	65
		Main Elements of the COMPACT 5 CNC	68
	4	2.2.1. Main Motor	68
	,	2.2.2 Main Spindle	69
		2.2.3. Spindle Drive	69
		2.2.4. Perforated disc with impulse generator	71
		2.2.5. Belt pulley drive	71
		2.2.6. Step motors	73
		2.2.7. Longitudinal and Cross slides	74
		2.2.8. Toolholder	76
		2.2.9. Tailstock	77
		2.2.10. Operation elements of control panel	78

CHAPTER 3:

3.	COORDINATE SYSTEM AND MEASURING PROCEDURES	83
	3.1. Coordinate System	83
	3.2. Measuring Procedures	84
	3.2.1. Incremental System	85
	3.2.2. Absolute System	85
	3.3. Combined System	87

.

CHAPTER 4:

4.	PROGRAMS AND PROGRAMMING	39
	4.1. Definition of the Program - Part Program	89
	4.2. Programming	89
	4.3. Part - Programming - Setting up a program	90
	4.3.1. Geometrical Information	90
	4.3.2. Technological Information	90
	4.4. Manual Programming	92
	4.5. Computer aided Programming	95

CHAPTER 5:

5.	PROG	RAM INPUT	98
	5.1.	Input format	98
	5.2.	What happens when data is put in	99
	5.3.	How to input a Program	99
	5.4.	Operating Elements CNC - Operation	102
		5.4.1. Figure Keys	103

CHAPTER 6:

6. ALAF	M SIGNS	109
6.1.	Alarm happens when wrong Data is put in	109
6.2.	Alarm signs - Causes - Measures	110
	6.2.1. A00 - Undefined dimension programmed	110
	6.2.2. A01 - Undefined radius programmed	112
	6.2.3. A02 - X - value too big	112
	6.2.4. A03 - False F - value programmed	112
	6.2.5. A04 - Z value too big	112
	6.2.6. A05 - No program end put in	113
	6.2.7. A06 - Revolution of main spindle too	
	fast when threading	113
	6.2.8. A07 - Undefined angle programmed	113
	6.2.9. A08 - End of tape when tape operation	
	"SAVE"	114
4 7 ¹	6.2.10. A09 - Program not found when using	
	mode operation "LOAD"	114
	6.2.11. Al0 - Writing protection active	115
	6.2.12. All - Load mistake - Only when using	
	mode of operation "LOAD"	116
	6.2.13. Al2 - Check mistake - Only when using	
	mode of operation "CHECK/SAVE"	116
	6.2.14. A13 - Switching from mm to inch with	
	full register	118
	6.2.15. A14 Wrong H - value	118
	6.2.16. A15 - Wrong Subroutine	118

iv

12

CHAPTER 7:

7.	MAGNETIC TAPE OPERATION	. 119
	7.1. Transmission of a program	119
	7.2. Erasing the tape	119
	7.3. Program Interruption during tape operation	121
	7.4. What happens when putting in the tape	121

з

CHAPTER 8:

8.	TYPES OF INTERPOLATION	123
	8.1. Linear Interpolation	123
	8.2. Circular Interpolation	124

CHAPTER 9:

9.	CANNI	ED CYCLES AND SUBROUTIN	JES	 (3) 		128
	9.1.	Canned Cycles		C	••••	128
	9.2.	Subroutines				129
		9.2.1. Programming of	Subroutine	es		131
		9.2.2. Existing Capaba	llities of	COMPACT 5	CNC	131

CHAPTER 10:

10.1.	Working	data	135
	10.1.1.	Cutting Speed (Vs)	135
	10.1.2.	Spindle Speed (S)	136
	10.1.3.	Feed (F)	136
10.2.	Finding	the cutting Values via charts	136

COMPACT 5CNC	139
CHAPTER 11:	
11. TOOLS	141
11.1. Geometry and Application of Tools used in	
COMPACT 5 CNC	142
11.2. Turret Toolholder	143
11.2.1. Operating the Turret Toolholder	143
11.3. Collecting tool data with optical	
presetting device	145
CHAPTER 12:	
12. PART PROGRAMMING	150
12.1. Mathematics for the programmer	153
12.1.1 Trigonometric Functions	153
12.1.1. (a) Pythagorean Theorem	153
12.2.1. (b) Sine and Cosine Function	154
12.2.1. (c) Tangent and Cotangent Functions	154
12.2.1. (d) How to find the radius of an	
arc which passes through a known	1
point	155

10.3. Selection of Transmissions Steps on

vi

THE THREE COMPONENT (Photo)	
COMPONENT 1 (Photo)	
12.2. COMPONENT 1	159
12.2.1. Part programming	159
12.2.2. Mathematical computations	164

COMPONENT 2 (Photo)

12.3.	COMP	ONENT	2		 166
12.	3.1.	Part	prc	gramming	 166

COMPONENT 3 (Photo)

12.4.	COMP	ONENT	3		 170
12.	4.1.	Part	pro	gramming	 170

CHAPTER 13:

	s'							
13. E	CONOR	AIC ANAL	YSIS FOR	COMPU	ΓER	NUMERICAL	CONTROL	
Μ	IACHIN	NES (CNC)		••••••			171
1	3.1.	Product	ion Cost	of "CO	OMPC	NENT 1" .		172
		13.1.1.	Materia	l Cost				172
		13.1.2.	Labour	Cost	•••••			172
		13.1.3.	Depreci	ation o	of M	lachinery a	and	
			Tooling	Cost	•••••			173
		13.1.4.	Overhea	d Costs	5			173

CONCLUSION	 174
REFERENCES	 175
APPENDISES	

4

.

ABSTRACT

This project deals with the Design and Programming of CNC Lathe, including the manufacturing of components on a CNC lathe and also give a general idea about what is NC and how is used today.

First the basic theory of the project was prepared including all the information about NC, CNC, DNC, FMS technology. Then a general study of EMCO COMPACT 5 CNC was followed with it's operation elements, coordinate system, measuring procedures, programming and program input characteristics. Also the tape preparation alarm signs, types of Interpolation, canned cycles and subroutines are described as well as the working data and Tooling System.

The main part of this project is the part programming for the manufacture of components which involves three exercises, followed by the manufacture of these components from bronze bar.

Finally, a cost analysis is prepared and some conclusions relating to the work carried out in this project.

х

I would like to express my appreciation to Dr. L. G. Lazari, lecture in the Mechanical Engineering Department of the Higher Technical Institute, for his valuable contribution and guidance during the preparation of this project.

*

1.

Paphitis Christos 3rd year student in Mechanical Engineering H.T.I.