HIGHER TECHNICAL INSTITUTE

GENERAL STUDIES DEPARTMENT MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

COMPUTER AIDED HVAC MODULAR SYSTEM

By STYLIANOU PRODROMOS (CS/171) CHIMARIS ANDREAS (M/772)

JUNE 1997

INTRODUCTION

Heating is a process and system of raising the temperature of an enclosed space for the primary purpose of ensuring the comfort of the occupants. To be able to design a central heating system in a building the first and main step is to find the heat requirements, in order to select the appropriate equipment since this project deals with heating, then the load requirements that will be considered are the heat losses that occur during winter.

The system suggested to the user is the central heating system with forced circulation. This system results from the combination of a boiler and a burner in order to head up the water, that circulates trough a systems of pipes, radiators, water circulators, expansion tank and e.t.c.

Historical development.

The earliest method of providing interior heating was an open fire. Such as source, along with related methods such as fireplaces, cast-iron stoves, and modern space heaters fuelled by gas or electricity, is known as direct heating because the conversion of energy into heat takes place at the site to be heated. A more common form of heating in modern times is known as central, or indirect, heating. It consists of the conversion of energy to heat at a source outside of, apart from, or located within the site or sites to be heated; the resulting heat is conveyed to the site through a fluid medium such as air, water, or steam.

Except for the ancient Greeks and Romans, most cultures relied upon direct-heating methods. Wood was the earliest fuel used, though in places where

CHAPTER 1

ESTIMATION OF HEAT LOSSES

Contents		page
1.1	Introduction	1
1.2	Confort	2
	1.2.1 Visual Comfort	3
	1.2.2 Acoustic Comfort	3
	1.2.3 Thermal Comfort	3
1.3	Purpose of load calculations	4
1.4	Principles and procedures for calculating heating load	4
	1.4.1 Unoccupied period	4
	1.4.2 Occupied periods	5
1.5 T	ypes of calculations	5
1.6 H	eating load	6
1.7 H	eat loss through Structure	7
	1.7.1 Structure of fabric losses	7
	1.7.2 Heat transfer	9
	1.7.3 Heat loss theory	10
	1.7.4 Factors affecting the head requirements	11
1.8 (Calculating conduction	12
	1.8.1 Temperature Difference	12
	1.8.2 Area	13
	1.8.3 Thermal Transmittance (U-value)	13
1.9 F	abric heat losses	17
	1.9.1 Walls	18
	1.9.2 Glazing	19
	1.9.3 Doors	22
	1.9.4 Roofs	23

<u>Context Diagram</u>

1.9.5 Floors

Contents		
1.10 Infiltration or ventilation losses	30	

ş

1-11 Total Head Load Of Building

31

<u>Context Diagram</u>

CHAPTER 2

CENTRAL HEATING SYSTEMS

Contents		page
2.1	Introduction	32
2.2	Central-heating systems and fuels	32
2.3	Warm-air heating	34
2.4	Hot-water heating	35
2.5	Steam heating	36
2.6	Electric heat	37
2.7	Heat pump	37

<u>Context Diagram</u>

CHAPTER 3

SELECTION OF THE SYSTEM FOR THE SPACE HEATING

<u>Co</u>	Contents	
3.1	Introduction	39
3.2	Selection of the heating method	40
	3.2.1 Radiator heating	42
	3.2.2 Natural convector heating	43
	3.2.3 Forced convector heating	44
	3.2.4 Unit heating	45
	3.2.5 Underfloor heating	45
	3.2.6 Ceiling heating	46
	3.2.7 Wall Heating	46
3.3	Selection of the method of hot water circulation	48
	3.3.1 Gravity circulating method	48
	3.3.2 Forced accelerated circulation	50
3.4	Selection of the type of circuit	50
3:5	Safety factor	53
3.6	Conversion factor	53
3.7	Selection of radiators	54
3.8	Pipe sizing	57
3.9	Procedure for sizing the pipework	57

Context Diagram

CHAPTER 4

EQUIPMENT AND SIZING SELECTION

Con	Contents	
4.1	Introduction	59
4.2	Boiler selection	61
4.3	Boiler sizing	61
4.4	Burner sizing	62
4.4	Expansion vessel sizing	63
4.5	Pumps	65
	4.5.1 Pumps positioning	65
	4.5.2 Central heating system pump sizing	66
	4.5.3 Pumps sizing procedure	66