HIGHER TECHNICAL INSTITUTE

COMPUTER STUDIES DEPARTMENT

DIPLOMA PROJECT

5

ANALYSIS AND IMPLEMENTATION OF AN ALGORITHM FOR THE CALCULATION OF A SORTED DATA STRUCTURE OF 2D OR 3D POINTS FROM A SET OF SCATTERED DATA

CS/142

SYSTEM'S ANALYSIS

Designed and Implemented by:

MARINOS TATTARIS RENOS MINOSHIS SIMEOU SIMOS

JUNE 1995

Summary

ANALYSIS AND IMPLEMENTATION OF AN ALGORITHM FOR THE CALCULATION OF A SORTED DATA STRUCTURE OF 2D OR 3D POINTS FROM A SET OF SCATTERED DATA

Project CS/142 Higher Technical Institute

MARINOS TATTARIS RENOS MINOSHIS (SIMEOU SIMOS

Having a system that gives you the ability to reconstruct a 3D object and at the same time visualize it on the screen can be very helpful, because you can view and analyze the object completely. Up to now, the existing imaging systems produce only 2D images and the development of a 3D reconstruction system can be described as a revolutionary step in the computer science.

The subject of this project is a part of the EU-project, suggested by the European Union to the Higher Technical Institute, called "KIT" (Keep In Touch).

It is important to emphasize that the purpose of this project is not to make the perfect 3D Reconstruction System, but to fill in the gab between the existing 2D Imaging System and a perfect 3D Reconstruction System. Project CS/142 makes an attempt to solve this problem.

CONTENTS

Summary About this book	
Acknowledgements	1
INTRODUCTION	2
CHAPTER 1: INITIAL INVESTIGATION	
1.1 General about reconstruction	4
1.2 General about sorting	4
1.2.1 Introduction	4
1.2.2 Rules for sorting	5
1.2.3 Sorting categories	6
CHAPTER 2: ANALYSIS AND GENERAL DESIGN	
2.1 Reconstruction	8
2.1.1 Surface reconstruction	8
2.1.2 Volume reconstruction	9
2.1.3 Reconstruction methods and procedures	10
2.2 Sorting Algorithms	11
2.2.1 Internal Sorting	11
2.2.1.1 Elementary Algorithms	11
- Selection Sort	11
- Insertion Sort	14
- Bubble Sort	17
2.2.1.2 Sorting Files With Large Records	19
- Shellsort	19
- Distribution Counting Sort	21
2.2.1.3 Advanced Sorting Algorithms	24
- Quicksort	24
- The Basic Algorithm	24
- Removing Recursion	28
- Small Subfiles	31
- Median Of Three Partitioning	31
- Randix Sorting	32
- Bits	33

- Randix Exchanged Sort	34
- Straight Randix Sort	38
- Linear Sort	40
- Priority Queues	40
- Elementary Implementations	42
- Heap Data Structure	44
- Algorithms On Heaps	46
- Heap Sort	50
- Merge Sort	52
- Mergesort	55
- List Mergesort	56
- Bottom-Up Mergesort	58
2.2.2 External Sorting	62
- Sort Merge	63
- Balanced Multiway Merging	63
- Replacement Selection	64
2.3 Selection of tools for system development	66
2.3.1 The Ansi C language	66
2.3.1.1 History of C	66
2.3.1.2 Why use Ansi C for developing the project	66
2.3.2 The UNIX Operating System	67
2.3.3 The user interface	68
2.3.3.1 The X Window System	68
2.3.3.2 Xlib	68
2.3.3.3 X Toolkit Intrinsics	69
2.3.3.4 Motif	87
2.3.3.5 Widgets	89
2.3.4 The OpenGL (Open Graphics Library)	93
2.3.4.1 Viewing	93
2.3.4.1.1 Viewing transformation	94
2.3.4.1.2 Modeling transformation	94
2.3.4.1.3 Projection transformation	96
2.3.4.1.4 Viewport transformation	97
2.3.4.2 Clipping	97
2.3.4.3 Light	98
2.3.4.4 Fog	99

2.4 System Requirements	100
2.4.1 Objectives of the project	100
CHAPTER 3: DETAILED DESIGN AND IMPLEMENTAT	ION
3.1 New system design	102
3.1.1 Data files	102
3.1.2 Security and control measures	102
3.2 Implementation and Installation planning	102
3.2.1 Implementation planning	102
3.2.2 Installation planning	103
3.2.3 Hardware alternatives	103
3.3 Technical design	103
3.3.1 Screen design	103
3.3.2 Messages and user interface	103
3.3.3 On-line help facility	104
3.4 Test specifications and planning	104
3.5 Code protection	104
3.6 User training	104
3.7 System test	105
CHAPTER 4: INSTALLATION	
4.1 Installation phase	106
4.1.1 File conversion	106
4.1.2 System installation	106
CHAPTER 5: REVIEW	
5.1 Review phase	107
5.1.1 Development recap	107
5.1.2 Post implementation review	107

REFERENCES CONCLUSION APPENDICES

FIGURES

Figure	1-1:	Sorting Categories	7
Figure	2-1:	Steps followed in 3D reconstruction	11
Figure	2-2:	Selection Sort	13
Figure	2-3:	Example of Insertion Sort	16
Figure	2-4:	Example of Shell Sort	21
Figure	2-5:	Example of Distribution Counting Sort	23
Figure	2-6:	Example of Quick Sort	28
Figure	2-7	Examples of Quick Sort when removing	
		recursion	30
Figure	2-8:	Example of Randix Exhchange Sort	
		with small subfiles	37
Figure	2-9:	Complete tree representation of a heap	45
Figure	2-10:	Array representation of a heap	45
Figure	2-11:	Example of Merge Sort with recursion	57
Figure	2-12:	Example of Merge Sort without	
		recursion	61
Figure	2-13:	X Window System Hierarchy	72
Figure	2-14:	The Software Architecture of Xt	
		Intrinsics - based applications	83
Figure	2-15:	Widget and Gadget Hierarchy	88
Figure	2-16:	Basic Widget Hierarchy	89
Figure	2-17:	Object translation	95
Figure	2-18:	Object rotation	95