Higher Technical Institute

Mechanical Engineering Course

Diploma Course

Design and Construction of a Constant Temperature Incubator

Kallides Charris

JUNE 1997

Design and Construction of a Constant Temperature Incubator

by

Kallides Charris Nicolas

This project is submitted to

the Department of Mechanical Engineering of the Higher Technical Institute

> Nicosia Cyprus

In partial fulfillment of the requirements for the diploma of

TECHNICIAN ENGINEER in MECHANICAL ENGINEERING

JUNE 1997

Acknowledgments

After from months of hard work, to it prefer this family to see a set of V-197 and a set of the set

I would the to express hit should approximit to to any approxime the Electronic Polyvice its off-may be the tot invite and concerned if every step of this placet.

i nemerie also aller to dinali bir. Circletopic Loniza, e de las bein present ess villegel de An mentalogia of the Rights Installed Rathing Re Land days, dath in fact have believe

To my family

ama 1997

Acknowledgments

After five months of hard work, this project has finally been completed. Of course, this would not have been achieved without the assistance of some people that have offered their help and useful knowledge on specific subjects.

I would like to express my sincere appreciation to my supervisor Dr. Eleftheriou Polyvios for offering me his best assistance and concern at every step of this project, until this was completed successfully.

I would also like to thank Mr. Christophi Costas, who has been present and offered me the workshops of the Higher Technical Institute for some days, during the Easter holidays.

Finally, I would like to thank the management of the Higher Technical Institute and also my father for sponsoring this project.

Kallides Charris

June 1997

Summary

Title: Design and construction of a constant temperature incubator.

Author: Kallides Charris Nicolas

The main idea of this project, is the design first and then the construction of a constant temperature incubator.

As a first step, the design of the incubator was made and scaled drawings were drawn.

Then, according to the demands and the conditions that were to be maintained by the machine, the selection of the appropriate materials was made and the construction was off to start.

Considerable weight was distributed to the mechanical parts of the machine since this project is to be submitted to the Mechanical Engineering department.

The electrical parts and the controllers were bought, assembled and then programmed and fitted to the machine.

Finally, the result was not the construction of a high capacity, and high technology incubator, but the construction of an incubator that presents the main functions required and can be used as a model for investigation or improvement for better future results.

TABLE OF CONTENTS

Part One

General

Pages

Introduction

Part Two

Report

Pages

Chapt	er One - I	ncubation Techniques and the Design	3			
1.1	History	History and evolution of incubation				
1.2		cubation and uses of incubation				
1.3	Design requirements of the general purpose incubator					
	1.3.1		7 7			
	1.3.2	The front of the structure	9			
		1.3.2.1 Access door to the interior	9			
		1.3.2.2 Access door to the water vessel	9			
		1.3.2.3 The control panel	10			
	1.3.3	The rear part of the structure	11			
	1.3.4	The inside parts and mechanisms of the structure	12			
		1.3.4.1 Turning mechanism				
		1.3.4.2 Egg-trays	13			
		1.3.4.3 The water vessel	13			
		1.3.4.4 The ventilation mechanism	13			
	1.3.5	The Outside cover	14			
	1.3.6	The assembly	15			
Chapt	er Two - (Construction	16			
2.1	Selecti	on of the necessary components and materials				
	for the construction of the incubator					
2.2	2 Construction of the incubator					
2.3						
Chapt	er Three -	Testing and settings	20			

	General Testing Temperature settings/calibration Humidity settings/calibration	20 21 23		
Chapter Four - Conclusions/Comments				

Part Three

Appendices

1.	Instructions		29	
	a) '	The eggs	29	
	b)]	Description of egg-trays	30	
	c)	Where to install the incubator	31	
	d) 1	Preparation and starting of the incubator	31	
		Prescription for brooding	31	
	f) '	Warnings	32	
	g) 1	incubation schedule	33	
2.	Electrical	34		
3.	Instructio	Instructions of the temperature controller		
4.	Heat losses from the incubator			
5.	Reference	43 56		

INTRODUCTION

For the design of this machine and for its construction, the conditions that are to be maintained for an egg were taken under consideration, in order that the embryo of this egg may be developed appropriately, to give a nestling.

Chicken eggs were taken as reference, though the specific device can hatch various eggs and bacteria.

The eggs that are to be stored in the device must be maintained for a specific interval of time (in case of chicken eggs, twenty one days) under constant temperature (38 °C) and humidity (85% relative humidity).

For best results the temperature must not be varied continuously, so we come to the result that a good insulating material would prevent the pitch of the temperature.

Also a way to keep the humidity at constant level was found and special reference will be made on this later in the project.

The controllers used, though they could be more accurate, if better quality was used, they give satisfactory outputs and good results for egg hatching.

All the parts of the machine were smartly assembled together, and all the safety precautions were taken under consideration, so the whole structure gives a good impression to the viewer, or user of it.

1