ENGREER TECHNICAL INSTETUTE

MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT

DESIGN OF A COMPUTER CONTROLLED GAS FLOW SYSTEM

M/866

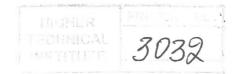
ANDREAS RINIS

則用.Y 1999

HIGHER TECHNICAL INSTITUTE

MECHANICAL ENGINEERING DEPARTMENT

DIPLOMA PROJECT


Design of a Computer-Controlled Gas Flow System

BY

ANDREAS RINIS

M/866

July 1999

DESIGN OF A COMPUTER - CONTROLLED GAS FLOW SYSTEM

by

Andreas Rinis

Project Report

Submitted to

the Department of Mechanical Engineering

of the Higher Technical Institute

Nicosia Cyprus

in partial fulfillment of the requirements

for the diploma of

TECHNICIAN ENGINEER

in

MECHANICAL ENGINEERING

July 1999

3032

List of contents

Acknowledgements	1
Abstract	2
Introduction	3

Chapter 1

LITERATURE SURVEY

1.1 Hardware	4
1.1.1 Flow Measurements	4
1.1.1.1 Flow Velocity Measurements Techniques	4
1.1.1.2 Instruments and Procedures for Measurement	
of Flow Rate	15
1.1.1.2.1 Measurements of Incompressible Flow	.15
1.1.1.2.2 Measurements of Compressible flow	.25
1.1.1 Electronic Mass Flowmeters	29
1.1.2 Regulators	37
1.1.3 Gas Purification System	39
1.2 Software	40
1.3 Theoretical Considerations - Pressure Losses in Pipes	.43
1.3.1 Major losses	43
1.3.2 Minor losses	

Chapter 2

Experimental Design and Pertinent Calculations	54
2.1 Schematic of experimental set-up.	54
2.2 Calculations for Pressure Losses in Piping System	54
2.3 Pressure regulators	
2.4 Moisture Filters	59
2.1 Equipment Purchase	60

Chapter 3

DISCUSSION	
3.1 Spray Drying	
3.2 Gas -Solid Reactions.	72
Conclusions	75
References	
Finally 1 was	
Appendix	

Acknowledgements

I would like to express my appreciation to my supervisor, Dr. Nicos Angastiniotis, for his valuable help and guidance.

I also want to thank my supervisor in Oxygen & Acetylene Industries Ltd, Mr. Dinos Zachariades for his valuable assistance, and also the Exhaust Industries BEDA for sending me a free of charge catalytic converter.

1

Finally I would like to thank my family for their support.

Abstract

Design of a Computer-controlled Gas Flow System

A gas-flow system was designed to accommodate critical flow rates of various gaseous species. All experimental parameters are accounted for and pertinent calculations are presented as well. A schematic of the actual design is also provided with all the critical components of the experimental set-up.

The design can accommodate a singular or combined flow of gases by using a manifold.

The purpose of the design is to establish an environment with controlled partial pressure for the subsequent control of the chemical activity in an open flow system.

The critical control of the chemical activity enables among other applications the making of novel catalytic materials.

2

Introduction

The chemical activity is a critical parameter when dealing with solid state reactions and chemical thermodynamics. The control of this particular parameter can initiate nucleation and growth of a particular solid phase. The chemical activity is a function of the partial pressure of the gaseous species and the processing temperature.

The implicit purpose of this project is to enable the critical control of the chemical activity by experimental control of the gaseous flow rate. A schematic of the actual set-up is provided with all the relevant parameters and pertinent calculations.

For the purpose of exemplifying the significance of the experimental set-up an actual example will be cited with all the relevant calculations.

The second parameter required for the critical control of the chemical activity is the temperature, therefore it has to be emphasized that the computerized set-up and relevant software were selected in such a way so as to enable the control of the temperature without further experimental design. The schematic of the experimental set-up in conjunction with the information given in this work render this project as the foundation for future work in controlling the nucleation and growth of novel solid state phases.